MENU

Author(s): IKh Shaykhutdinov, IM Bairikov, AA Shmelev, AV Sokolov

Email(s): i.h.shajhutdinov@samsmu.ru

DOI: 10.52711/0974-360X.2025.00191   

Address: IKh Shaykhutdinov1*, IM Bairikov2, AA Shmelev3, AV Sokolov1
1Laboratory New Medical Materials and Technologies, Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Ulitsa Chapaevskaya 89, Samara, 443099, Russian Federation.
2Department Oral and Maxillofacial Surgery, Samara State Medical University, Ulitsa Chapaevskaya 89, Samara, 443099, Russian Federation.
3Department Chemistry of Institute of pharmacy, Samara State Medical University, Ulitsa Chapaevskaya 89, Samara, 443099, Russian Federation.
*Corresponding Author

Published In:   Volume - 18,      Issue - 3,     Year - 2025


ABSTRACT:
Metal organic frameworks (MOFs) have a promising application for targeted delivery and controlled release of drugs. The aim of this work was to study the potential of MIL-101 (Fe) for prolonged drug release. In this study, we synthesized MIL-101(Fe) using the hydrothermal method. This MOF has a high surface area, acceptable pore aperture sizes, polymer components (iron and terephthalic acid) have low toxicity, in addition, this material is capable of biodegradation. For the above reasons, MIL-101(Fe) was chosen by us as the carrier of the medicinal substance. Metronidazole is encapsulated (10% by weight) in MOF. The synthesized materials were characterized by the methods of powder X-ray diffractometry, porosimetry and scanning electron microscopy. These methods confirmed the loading of the drug substance into the pores of MIL-101(Fe), and also showed the absence of the effect of metronidazole encapsulation on the structure of the MOF. In this paper, we conducted a study on the release of metronidazole from MIL-101(Fe) in water and model biological fluids and showed that the complete release of metronidazole in artificial saliva was observed for 7.5 hours, with a cumulative release of 92.74±2.04%, in serum - after 9 hours, with a cumulative release of 80.36±1.57%. The selectivity of metronidazole release from MIL-101(Fe) in various media was revealed.


Cite this article:
IKh Shaykhutdinov, IM Bairikov, AA Shmelev, AV Sokolov. Metronidazole Loading in MIL-101(Fe) and Investigation of release in various body fluids. Research Journal of Pharmacy and Technology. 2025;18(3):1317-3. doi: 10.52711/0974-360X.2025.00191

Cite(Electronic):
IKh Shaykhutdinov, IM Bairikov, AA Shmelev, AV Sokolov. Metronidazole Loading in MIL-101(Fe) and Investigation of release in various body fluids. Research Journal of Pharmacy and Technology. 2025;18(3):1317-3. doi: 10.52711/0974-360X.2025.00191   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-3-52


REFERENCES:
1.    Barton TJ, Bull LM, Klemperer WG, Loy DA, McEnaney B, Misono M, et al. Tailored Porous Materials. Chemistry of Materials. 1999; 11(10): 2633-56. doi: 10.1021/cm9805929.
2.    Cheetham AK, Férey G, Loiseau T. Open-Framework Inorganic Materials. Angew Chem Int Ed Engl. 1999; 38(22): 3268-92.
3.    Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? Journal of the American Chemical Society. 2012; 134(36): 15016-21. doi: 10.1021/ja3055639.
4.    Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science (New York, NY). 2013; 341(6149): 1230444. doi: 10.1126/science.1230444.
5.    James SL. Metal-organic frameworks. Chemical Society Reviews. 2003; 32(5): 276-88. doi: 10.1039/b200393g.
6.    Li H, Eddaoudi M, O'Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999; 402(6759): 276-9. doi: 10.1038/46248.
7.    Paz FAA, Klinowski J, Vilela SMF, Tomé JPC, Cavaleiro JAS, Rocha J. Ligand design for functional metal–organic frameworks. Chemical Society Reviews. 2012; 41(3): 1088-110. doi: 10.1039/C1CS15055C.
8.    Wang Z, Cohen SM. Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews. 2009; 38(5): 1315-29. doi: 10.1039/B802258P.
9.    Awais HM, Jamal M, Javaid M. Topological properties of metal-organic frameworks. Main Group Metal Chemistry. 2020; 43(1): 67-76. doi: 10.1515/mgmc-2020-0007.
10.    Kim D, Liu X, Lah MS. Topology analysis of metal–organic frameworks based on metal–organic polyhedra as secondary or tertiary building units. Inorg Chem Front. 2015; 2(4): 336-60. doi: 10.1039/C4QI00236A.
11.    Li X, Liu J, Zhou K, Ullah S, Wang H, Zou J, et al. Tuning Metal–Organic Framework (MOF) Topology by Regulating Ligand and Secondary Building Unit (SBU) Geometry: Structures Built on 8-Connected M6 (M = Zr, Y) Clusters and a Flexible Tetracarboxylate for Propane-Selective Propane/Propylene Separation. Journal of the American Chemical Society. 2022; 144(47): 21702-9. doi: 10.1021/jacs.2c09487.
12.    Xu P, Azeem M, Izhar MM, Shah SM, Binyamin MA, Aslam A. On Topological Descriptors of Certain Metal-Organic Frameworks. Journal of Chemistry. 2020; 2020: e8819008. doi: 10.1155/2020/8819008.
13.    Escobar-Hernandez HU, Pérez LM, Hu P, Soto FA, Papadaki MI, Zhou H-C, Wang Q. Thermal Stability of Metal–Organic Frameworks (MOFs): Concept, Determination, and Model Prediction Using Computational Chemistry and Machine Learning. Ind Eng Chem Res. 2022; 61(17): 5853-62. doi: 10.1021/acs.iecr.2c00561.
14.    Healy C, Patil KM, Wilson BH, Hermanspahn L, Harvey-Reid NC, Howard BI, et al. The thermal stability of metal-organic frameworks. Coordination Chemistry Reviews. 2020; 419: 213388. doi: 10.1016/j.ccr.2020.213388.
15.    Alhamami M, Doan H, Cheng C-H. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption. Materials (Basel). 2014; 7(4): 3198-250. doi: 10.3390/ma7043198.
16.    Formalik F, Neimark AV, Rogacka J, Firlej L, Kuchta B. Pore opening and breathing transitions in metal-organic frameworks: Coupling adsorption and deformation. Journal of Colloid and Interface Science. 2020; 578: 77-88. doi: 10.1016/j.jcis.2020.05.105.
17.    García-Ben J, López-Beceiro J, Artiaga R, Salgado-Beceiro J, Delgado-Ferreiro I, Kolen’ko YV, et al. Discovery of Colossal Breathing-Caloric Effect under Low Applied Pressure in the Hybrid Organic–Inorganic MIL-53(Al) Material. Chemistry of Materials. 2022; 34(7): 3323-32. doi: 10.1021/acs.chemmater.2c00137.
18.    Ghoufi A, Benhamed K, Boukli-Hacene L, Maurin G. Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework. ACS Cent Sci. 2017; 3(5): 394-8. doi: 10.1021/acscentsci.6b00392.
19.    Seoane B, Sorribas S, Mayoral Á, Téllez C, Coronas J. Real-time monitoring of breathing of MIL-53(Al) by environmental SEM. Microporous and Mesoporous Materials. 2015; 203: 17-23. doi: 10.1016/j.micromeso.2014.10.016.
20.    Li H, Li L, Lin R-B, Zhou W, Zhang Z, Xiang S, Chen B. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem. 2019; 1(1): 100006. doi: 10.1016/j.enchem.2019.100006.
21.    Li Y., Wang Y., Fan W., Sun D. Flexible metal–organic frameworks for gas storage and separation // Dalton Transactions. ‒ 2022. ‒ T. 51, No. 12. ‒ C. 4608-4618.
22.    Mahmoud E, Ali L, El Sayah A, Alkhatib SA, Abdulsalam H, Juma M, Al-Muhtaseb AaH. Implementing Metal-Organic Frameworks for Natural Gas Storage. Crystals. 2019; 9(8): 406. doi: 10.3390/cryst9080406.
23.    Han Y, Das P, He Y, Sorescu DC, Jordan KD, Rosi NL. Crystallographic Mapping and Tuning of Water Adsorption in Metal-Organic Frameworks Featuring Distinct Open Metal Sites. Journal of the American Chemical Society. 2022; 144(42): 19567-75. doi: 10.1021/jacs.2c08717.
24.    Mansour O, Kawas G, Rasheed MA, Sakur AA. Applications of Metal-Organic Frameworks (MOFs) to Separation Analytical Techniques. Research Journal of Pharmacy and Technology. 2018; 11(8): 3514-22. doi: 10.5958/0974-360X.2018.00650.9.
25.    Shanmugam M, Agamendran N, Sekar K, Natarajan TS. Metal–organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Phys Chem Chem Phys. 2023; 25(44): 30116-44. doi: 10.1039/D3CP04297A.
26.    Hou S-Z, Zhang X-D, Yuan W-W, Li Y-X, Gu Z-Y. Indium-Based Metal–Organic Framework for High-Performance Electroreduction of CO2 to Formate. Inorg Chem. 2020; 59(16): 11298-304. doi: 10.1021/acs.inorgchem.0c00769.
27.    Yuan W-W, Wu J-X, Zhang X-D, Hou S-Z, Xu M, Gu Z-Y. In situ transformation of bismuth metal–organic frameworks for efficient selective electroreduction of CO2 to formate. J Mater Chem A. 2020; 8(46): 24486-92. doi: 10.1039/D0TA08092F.
28.    Ding M, Yang L, Zeng J, Yan X, Wang Q. Orderly MOF-Assembled Hybrid Monolithic Stationary Phases for Nano-Flow HPLC. Anal Chem. 2020; 92(24): 15757-65. doi: 10.1021/acs.analchem.0c02706.
29.    Kioka K, Mizutani N, Hosono N, Uemura T. Mixed Metal–Organic Framework Stationary Phases for Liquid Chromatography. ACS Nano. 2022; 16(4): 6771-80. doi: 10.1021/acsnano.2c01592.
30.    Li X, Li B, Liu M, Zhou Y, Zhang L, Qiao X. Core-Shell Metal-Organic Frameworks as the Mixed-Mode Stationary Phase for Hydrophilic Interaction/Reversed-Phase Chromatography. ACS Appl Mater Interfaces. 2019; 11(10): 10320-7. doi: 10.1021/acsami.9b00285.
31.    Liu M, Jing Y, Zhang L, Zhou Y, Yan H, Song Y, Qiao X. MOF-74@SiO2 core-shell stationary phase: Preparation and its applications for mixed-mode chromatographic separation. J Chromatogr B Analyt Technol Biomed Life Sci. 2021; 1163: 122506. doi: 10.1016/j.jchromb.2020.122506.
32.    Chen G, Luo J, Cai M, Qin L, Wang Y, Gao L, et al. Investigation of Metal-Organic Framework-5 (MOF-5) as an Antitumor Drug Oridonin Sustained Release Carrier. Molecules. 2019; 24(18): 3369. doi: 10.3390/molecules24183369.
33.    Gorban IE, Soldatov MA, Butova VV, Medvedev PV, Burachevskaya OA, Belanova A, et al. ᶫ-Leucine Loading and Release in MIL-100 Nanoparticles. International Journal of Molecular Sciences. 2020; 21(24): 9758. doi: 10.3390/ijms21249758.
34.    Hartlieb KJ, Ferris DP, Holcroft JM, Kandela I, Stern CL, Nassar MS, et al. Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies. Mol Pharmaceutics. 2017; 14(5): 1831-9. doi: 10.1021/acs.molpharmaceut.7b00168.
35.    He S, Wu L, Li X, Sun H, Xiong T, Liu J, et al. Metal-organic frameworks for advanced drug delivery. Acta Pharmaceutica Sinica B. 2021; 11(8): 2362-95. doi: 10.1016/j.apsb.2021.03.019.
36.    Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, et al. Metal–Organic Frameworks in Biomedicine. Chemical Reviews. 2012; 112(2): 1232-68. doi: 10.1021/cr200256v.
37.    Lawson HD, Walton SP, Chan C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl Mater Interfaces. 2021;13(6):7004-20. doi: 10.1021/acsami.1c01089.
38.    Liu Y, Wang Y, Huang J, Zhou Z, Zhao D, Jiang L, Shen Y. Encapsulation and controlled release of fragrances from functionalized porous metal–organic frameworks. AIChE Journal. 2019; 65(2): 491-9. doi: 10.1002/aic.16461.
39.    Sun Y, Zheng L, Yang Y, Qian X, Fu T, Li X, et al. Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Lett. 2020; 12(1): 103. doi: 10.1007/s40820-020-00423-3.
40.    Suresh K, Matzger AJ. Enhanced Drug Delivery by Dissolution of Amorphous Drug Encapsulated in a Water Unstable Metal-Organic Framework (MOF). Angew Chem Int Ed Engl. 2019; 58(47): 16790-4. doi: 10.1002/anie.201907652.
41.    Yang J, Wang H, Liu J, Ding M, Xie X, Yang X, et al. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy. RSC Adv. 2021; 11(6): 3241-63. doi: 10.1039/D0RA09878G.
42.    Al Haydar M, Abid HR, Sunderland B, Wang S. Metal organic frameworks as a drug delivery system for flurbiprofen. Drug Design, Development and Therapy. 2017; 11: 2685-95. doi: 10.2147/DDDT.S145716.
43.    De D, Sahoo P. The impact of MOFs in pH-dependent drug delivery systems: progress in the last decade. Dalton Trans. 2022; 51(26): 9950-65. doi: 10.1039/D2DT00994C.
44.    Karimi Alavijeh R, Akhbari K. Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin. Inorg Chem. 2020; 59(6): 3570-8. doi: 10.1021/acs.inorgchem.9b02756.
45.    Madhusudhan A, Reddy GB, Venkatesham M, Veerabhadram G, Kumar DA, Natarajan S, et al. Efficient pH Dependent Drug Delivery to Target Cancer Cells by Gold Nanoparticles Capped with Carboxymethyl Chitosan. International Journal of Molecular Sciences. 2014; 15(5): 8216-34. doi: 10.3390/ijms15058216.
46.    Ranjbar M, Pardakhty A, Amanatfard A, Asadipour A. Efficient drug delivery of β-estradiol encapsulated in Zn-metal-organic framework nanostructures by microwave-assisted coprecipitation method. Drug Design, Development and Therapy. 2018; 12: 2635-43. doi: 10.2147/DDDT.S173324.
47.    Tiwari A, Singh A, Garg N, Randhawa JK. Curcumin encapsulated zeolitic imidazolate frameworks as stimuli responsive drug delivery system and their interaction with biomimetic environment. Scientific Reports. 2017; 7(1): 12598. doi: 10.1038/s41598-017-12786-6.
48.    Almáši M, Zeleňák V, Palotai P, Beňová E, Zeleňáková A. Metal-organic framework MIL-101(Fe)-NH2 functionalized with different long-chain polyamines as drug delivery system. Inorganic Chemistry Communications. 2018; 93: 115-20. doi: 10.1016/j.inoche.2018.05.007.
49.    Gao Y, Liang Y, Zhou Z, Yang J, Tian Y, Niu J, et al. Metal-organic framework nanohybrid carrier for precise pesticide delivery and pest management. Chemical Engineering Journal. 2021; 422: 130143. doi: 10.1016/j.cej.2021.130143.
50.    Huxford RC, Della Rocca J, Lin W. Metal–organic frameworks as potential drug carriers. Current Opinion in Chemical Biology. 2010; 14(2): 262-8. doi: 10.1016/j.cbpa.2009.12.012.
51.    Lebedev OI, Millange F, Serre C, Van Tendeloo G, Férey G. First Direct Imaging of Giant Pores of the Metal−Organic Framework MIL-101. Chemistry of Materials. 2005; 17(26): 6525-7. doi: 10.1021/cm051870o.
52.    Hu H, Zhang H, Chen Y, Ou H. Enhanced photocatalysis using metal–organic framework MIL-101(Fe) for organophosphate degradation in water. Environ Sci Pollut Res. 2019; 26(24): 24720-32. doi: 10.1007/s11356-019-05649-2.
53.    Pope C. Metronidazole. Monograph for Professionals. Oct 9, 2023. Available from: https://www.drugs.com/monograph/metronidazole.html.
54.    Abbas HA. Inhibition of Virulence of Pseudomonas aeruginosa: A Novel Role of Metronidazole Against Aerobic Bacteria. Research Journal of Pharmacy and Technology. 2015; 8(12): 1640-4. doi: 0.5958/0974-360X.2015.00295.4
55.    Ajazuddin, Banjare T, Alexander A, Agrawal P, Bhandarkar A, Bhatt A, et al. Formulation and Evaluation of Colon Specific Matrix Tablet of Metronidazole. Research Journal of Pharmacy and Technology. 2018; 11(5): 2040-4. doi: 10.5958/0974-360X.2018.00378.5.
56.    Katorkin SE, Andreev PS, Isaev VR. Features Of The Colon Mucosa In Patients With Exacerbation Of Ulcerative Colitis. Science and Innovations in Medicine. 2016; 1(4): 63-8. doi: 10.35693/2500-1388-2016-0-4-63-68
57.    Tiwari G, Tiwari R, Srivastava B, Rai AK. Design and Evaluation of Target Retentive Device Containing Metronidazole for the Treatment of Periodontal disease. Research Journal of Pharmacy and Technology. 2008; 1(4): 390-4.
58.    Lamp KC, Freeman CD, Klutman NE, Lacy MK. Pharmacokinetics and pharmacodynamics of the nitroimidazole antimicrobials. Clin Pharmacokinet. 1999; 36(5): 353-73. doi: 10.2165/00003088-199936050-00004.
59.    Chandrakar S, Nagori K, Sharma M, Gupta S, Solanki H, Dewangan K, et al. Formulation and Evaluation of Floating tablet of Metronidazole for eradication of Helicobacter pylori. Research Journal of Pharmacy and Technology. 2016; 9(7): 870-4. doi: 10.5958/0974-360X.2016.00165.7.
60.    Mohire NC, Yadav AV, Gaikwad VK. Novel Approaches in Development of Metronidazole Orodispersible Tablets. Research Journal of Pharmacy and Technology. 2009; 2(2): 283-6.
61.    METRONIDAZOLE January 2018; [14 p.]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/018890s052lbl.pdf
62.    Galván-Tejada N, Bernès S, Castillo-Blum SE, Nöth H, Vicente R, Barba-Behrens N. Supramolecular structures of metronidazole and its copper(II), cobalt(II) and zinc(II) coordination compounds. Journal of Inorganic Biochemistry. 2002; 91(1): 339-48. doi: 10.1016/S0162-0134(02)00468-3.
63.    Łysik D, Mystkowska J, Markiewicz G, Deptuła P, Bucki R. The Influence of Mucin-Based Artificial Saliva on Properties of Polycaprolactone and Polylactide. Polymers. 2019; 11(11): 1880. doi: 10.3390/polym11111880.
64.    Yang M, Tang J, Ma Q, Zheng N, Tan L. High activity Fe-MIL-101 solid acid catalyst for acetalization of aldehydes with methanol and enamination of β-dicarbonyl compounds. Journal of Porous Materials. 2015; 5(22): 1345-50. doi: 10.1007/s10934-015-0011-0.
65.    Sakur AA, Dabbeet HA, Noureldin I. Novel Drug Selective Sensors for Simultaneous Potentiometric Determination of both Ciprofloxacin and Metronidazole in Pure form and Pharmaceutical Formulations. Research Journal of Pharmacy and Technology. 2019; 12(7): 3377-84. doi: 10.5958/0974-360X.2019.00570.5.
66.    Sivakumar R, Ganesan V, Viyas M, Rajendran NN, Kommala M. Metronidazole Encapsulation within Chitosan Coated Eudragit RL Microsphers for Site Specific Delivery. Research Journal of Pharmacy and Technology. 2011; 4(6): 993-6.
67.    Joshi RS, Pawar NS, Katiyar SS, Shinde AT, Zope DB. Effective Quantitation of Metronidazole in Injectable Pharmaceutical Dosage Form Using UV Spectroscopy. Research Journal of Pharmacy and Technology. 2012; 5(4): 494-6.
68.    Maliwal D, Jain A, Maheshwari RK, Patidar V. Simultaneous Spectrophotometric Estimation of Metronidazole and Norfloxacin in Combined Tablet Formulations using hydrotropy. Research Journal of Pharmacy and Technology. 2008; 1(4): 357-61.
69.    Huang C, Gao J, Miao L. Simultaneous determination of flucloxacillin and ampicillin in human plasma by ultra performance liquid chromatography–tandem mass spectrometry and subsequent application to a clinical study in healthy Chinese volunteers. Journal of Pharmaceutical and Biomedical Analysis. 2012; 59: 157-61. doi: 10.1016/j.jpba.2011.09.024.
70.    Государственная Фармакопея Российской Федерации. -  Пятнадцатое издание. – М.: Институт фармакопеи и стандартизации в сфере обращения лекарственных средств ФГБУ "НЦЭСМП" Минздрава России, 2023. / URL: https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-15/ [In russ.]
71.    Barbosa ADS, Julião D, Fernandes DM, Peixoto AF, Freire C, de Castro B, et al. Catalytic performance and electrochemical behaviour of Metal–organic frameworks: MIL-101(Fe) versus NH2-MIL-101(Fe). Polyhedron. 2017; 127: 464-70. doi: 10.1016/j.poly.2016.10.032.
72.    Skobelev IY, Sorokin AB, Kovalenko KA, Fedin VP, Kholdeeva OA. Solvent-free allylic oxidation of alkenes with O-2 mediated by Fe- and Cr-MIL-101. Journal of Catalysis. 2013; 298: 61-9. doi: 10.1016/j.jcat.2012.11.003.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available