Author(s):
Lambang Bargowo, Chiquita Prahasanti, Yunita Purwaningsih, Irma Josefina, Rini Devijanti Ridwan, Banun Kusumawardani, Mohammed Ahmed Aljunaid
Email(s):
chiquita-p-s@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2025.00294
Address:
Lambang Bargowo1,2, Chiquita Prahasanti1*, Yunita Purwaningsih3, Irma Josefina1, Rini Devijanti Ridwan4, Banun Kusumawardani5, Mohammed Ahmed Aljunaid2,6
1Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2DoctoralProgram, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Student of Periodontic Residency Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
4Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia.
5Department of Biomedical Sciences, Faculty of Dentistry, UniversityofJember, Jember, Indonesia.
6Lecturer Department Dental Medicine, Faculty of Medicine, Taiz University, Taiz, Yemen.
*Corresponding Author
Published In:
Volume - 18,
Issue - 5,
Year - 2025
ABSTRACT:
Background/aim: Dental implants serve as an optimal solution for tooth loss, commonly utilizing titanium as a biomaterial. However, the release of metal ions and the potential for allergic reactions in some patients pose challenges. The implant's success relies on effective osseointegration between the implant material and bone. While polymethylmethacrylate (PMMA) can be used as an implant material, it lacks bioactivity. To address this, hydroxyapatite (HAp) is introduced. The combination of PMMA/HAp composite biomaterials is suggested for dental implants due to their favorable mechanical, biological, and chemical properties. The study investigates the potential of PMMA/HAp as implant materials by examining Osteoprotegerin (OPG) and receptor activators of nuclear factor-?ß ligand (RANKL) expression in osteoblast cells using immunocytochemical analysis. Materials and methods: Twenty-four fetal rat calvarial osteoblast cell cultures were divided into six groupssuch as a 7-day control group, a 14-day control group, a 7-day PMMA/HApBBK group, a 14-day PMMA/HApBBK group, a 7-day PMMA/HApGMP group, and the 14-day PMMA/HApGMP group. The expression of OPG and RANKL was analyzed using immunocytochemical analysis. Results: Statistical analysis using one-way ANOVA yielded a significance value of 0.000 (p?0.05). OPG and RANKL expression increased in the 7- and 14-day groups following exposure to PMMA/HAp. Conclusion: The combination of PMMA and HAp demonstrates the potential to enhance OPG and RANKL expression in osteoblast cells.
Cite this article:
Lambang Bargowo, Chiquita Prahasanti, Yunita Purwaningsih, Irma Josefina, Rini Devijanti Ridwan, Banun Kusumawardani, Mohammed Ahmed Aljunaid. Expression of OPG and RANKL in Osteoblast Cells exposed by Polymethylmethacrylate (PMMA) and Hydroxyapatite (HAp) Combination. Research Journal of Pharmacy and Technology. 2025;18(5):2055-2. doi: 10.52711/0974-360X.2025.00294
Cite(Electronic):
Lambang Bargowo, Chiquita Prahasanti, Yunita Purwaningsih, Irma Josefina, Rini Devijanti Ridwan, Banun Kusumawardani, Mohammed Ahmed Aljunaid. Expression of OPG and RANKL in Osteoblast Cells exposed by Polymethylmethacrylate (PMMA) and Hydroxyapatite (HAp) Combination. Research Journal of Pharmacy and Technology. 2025;18(5):2055-2. doi: 10.52711/0974-360X.2025.00294 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-5-17
REFERENCES:
1. Jubhari EH, Pangiawan W. The importance of prosthetic planning for implant-supported dentures in esthetic zone. Makassar Dental Journal. 2020; 9(2): 138-142. doi:10.35856/MDJ.V9I2.335
2. Utami DP, Indrani DJ, Eriwati YK. Peran metode modifikasi permukaan implan terhadap keberhasilan osseointegrasi The role of implant surface modification method on the success of osseointegration. Jurnal Kedokteran Gigi Universitas Padjadjaran. 2019; 31(2): 95-101. doi:10.24198/JKG.V31I2.17967
3. Prahasanti C, Setijanto D, Ernawati DS, et al. Utilization of Polymethyl Methacrylate and Hydroxyapatite Composite as Biomaterial Candidate for Porous Trabecular Dental Implant Fixture Development: A Narrative Review. Res J Pharm Technol. 2022;15(4):1863-1869. doi:10.52711/0974-360X.2022.00312
4. Arsista D, Kusuma Eriwati Y, Peminatan PM, Material I, Gigi K. Desain dan fungsi implan kedokteran gigi yang beredar di pasaran Design and function of dental implants widely circulated on the market. Jurnal Kedokteran Gigi Universitas Padjadjaran. 2018;30(3):168-174. doi:10.24198/JKG.V30I3.18007
5. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med. 1996;7(4).
6. Ku KL, Wu YS, Wang CY, et al. Incorporation of surface-modified hydroxyapatite into poly(methyl methacrylate) to improve biological activity and bone ingrowth. R Soc Open Sci. 2019;6(5). doi:10.1098/RSOS.182060
7. Ensaif BS, Al-Rubaie MRH, Edan DS. Studying the Affects of Salvia officinalis and Commiphora myrrha Extracts on Poly Methyl Methacrylate Acrylic (PMMA) and Flexible Acrylic Materials Exposed to Escherichia coli. Res J Pharm Technol. 2019; 12(5): 2407-2412. doi:10.5958/0974-360X.2019.00403.7
8. Bergmann CP, Stumpf A. Dental Ceramics: Microstructure, Properties and Degradation. Dental Ceramics. Published online January 1, 2013: 1-84. doi:10.1007/978-3-642-38224-6
9. Radha G, Balakumar S, Venkatesan B, Vellaichamy E. A novel nano-hydroxyapatite – PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties. Materials Science and Engineering C. 2017; 73: 164-172. doi:10.1016/J.MSEC.2016.11.098
10. Anjarsari. Sintesis Dan Karakterisasi Biokomposit Bcp/Kolagen Sebagai Material Perancah Tulang. Bogor Agricultural University (IPB); 2017. Accessed January 13, 2024. http://repository.ipb.ac.id/handle/123456789/83165
11. Singh S, Pal A, Mohanty S. Nano Structure of Hydroxyapatite and its modern approach in Pharmaceutical Science. Res J Pharm Technol. 2019; 12(3): 1463-1472. doi:10.5958/0974-360X.2019.00243.9
12. Kamadjaja MJK, Salim S, Subiakto BDS. Application of Hydroxyapatite scaffold from Portunus pelagicus on OPG and RANKL expression after tooth extraction of Cavia cobaya. Res J Pharm Technol. 2021; 14(9): 4647-4651. doi:10.52711/0974-360X.2021.00807
13. Wijesinghe WPSL, Mantilaka MMMGPG, Karunarathne TSEF, Rajapakse RMG. Synthesis of a hydroxyapatite/poly(methyl methacrylate) nanocomposite using dolomite. Nanoscale Adv. 2019; 1(1): 86-88. doi:10.1039/C8NA00006A
14. Hendrijantini N, Rostiny R, Kurdi A, et al. Molecular Triad RANK/ RANKL/ OPG in Mandible and Femur of Wistar Rats (Rattus norvegicus) With Type 2 Diabetes Mellitus. Recent Advances in Biology and Medicine. 2019; 5: 1. doi:10.18639/RABM.2019.959614
15. Hienz SA, Paliwal S, Ivanovski S. Mechanisms of Bone Resorption in Periodontitis. Published online 2015. doi:10.1155/2015/615486
16. Sprangers S. The origin of lamellar structure in cortical bone. Biological Physics Chalmers. Published online 2014.
17. Martinez LM, Labovsky V, Fernández-Vallone VB, et al. Mesenchymal Stem Cells as Regulators of the Bone Marrow and Bone Components. Mesenchymal Stromal Cells as Tumor Stromal Modulators. Published online January 1, 2017: 369-400. doi:10.1016/B978-0-12-803102-5.00015-X
18. Prahasanti C, Krismariono A, Takanamita R, et al. Enhancement of Osteogenesis Using a Combination of Hydroxyapatite and Stem Cells from Exfoliated Deciduous Teeth. Journal of International Dental and Medical Research. 2020; 13(2): 508-512.
19. Gonçalves G, Portolés MT, Ramírez-Santillán C, et al. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations. J Mater Sci Mater Med. 2013; 24(12): 2787-2796. doi:10.1007/S10856-013-5030-2
20. Schwartz C, Lecestre P, Frayssinet P, Liss P. Bone substitutes. European Journal of Orthopaedic Surgery and Traumatology. 1999; 9(2): 161-165. doi:10.1007/BF00542583/METRICS
21. Divilia D, Parwati Sari R, Budi Teguh P, Kedokteran Gigi Fakultas Kedokteran Gigi Universitas Hang Tuah Surabaya S, Oral Fakultas Kedokteran Gigi Universitas Hang Tuah Surabaya B, Fakultas Kedokteran Gigi Universitas Hang Tuah Surabaya P. Efektivitas Kombinasi Grafting Cangkang Kerang Darah (Anadara granosa) dan Minyak Ikan Lemuru (Sardinella longiceps) Terhadap Penurunan Jumlah Osteoklas Pada Proses Bone Repair. DENTA. 2015; 9(1): 20-29. Accessed January 13, 2024. https://journal-denta.hangtuah.ac.id/index.php/jurnal/article/view/197
22. Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res. 2011; 343(2): 289-302. doi:10.1007/S00441-010-1086-1
23. Rustam A, Tatengkeng F, Fahruddin AMuh, Djais AI. Kombinasi perancah silk-fibroin dari kepompong ulat sutera (Bombyx mori) dan konsentrat platelet sebagai inovasi terapi regenerasi tulang alveolar Silk-fibroin scaffold from silkworm cocoon (Bombyx mori) and platelet concentrate-based mineralized plasmati. Makassar Dental Journal. 2017; 6(3). doi:10.35856/MDJ.V6I3.32
24. Hassumi JS, Mulinari-Santos G, Fabris AL da S, et al. Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis. J Appl Oral Sci. 2018; 26. doi:10.1590/1678-7757-2017-0326
25. Naghsh N, Razavi SM, Minaiyan M, et al. Evaluation of the effects of two different bone resorption inhibitors on osteoclast numbers and activity: An animal study. Dent Res J (Isfahan). 2016; 13(6): 500. doi:10.4103/1735-3327.197034
26. Prahasanti C, Subrata LH, Saskianti T, Suardita K, Ernawati DS. Combined Hydroxyapatite Scaffold and Stem Cell from Human Exfoliated Deciduous Teeth Modulating Alveolar Bone Regeneration via Regulating Receptor Activator of Nuclear Factor-Κb and Osteoprotegerin System. Iran J Med Sci. 2019; 44(5): 415-421. doi:10.30476/IJMS.2019.44962
27. Siddiqui JA, Partridge NC. Physiological bone remodeling: Systemic regulation and growth factor involvement. Physiology. 2016; 31(3): 233-245. doi:10.1152/physiol.00061.2014
28. Sari RP, Revianti S, Andriani D, Prananingrum W, Rahayu RP, Sudjarwo SA. The Effect of Anadara granosa Shell’s-Stichopus hermanni Scaffold on CD44 and IL-10 Expression to Decrease Osteoclasts in Socket Healing. Eur J Dent. 2021; 15(2): 228-235. doi:10.1055/S-0040-1719215
29. Belibasakis GN, Bostanci N. The RANKL-OPG system in clinical periodontology. J Clin Periodontol. 2012; 39(3): 239-248. doi:10.1111/J.1600-051X.2011.01810.X
30. Huang H, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: molecular mechanisms. Am J Orthod Dentofacial Orthop. 2014; 146(5): 620-632. doi:10.1016/J.AJODO.2014.07.007
31. Kang JH, Ko HM, Moon JS, et al. Osteoprotegerin Expressed by Osteoclasts: An Autoregulator of Osteoclastogenesis. J Dent Res. 2014; 93(11): 1116. doi:10.1177/0022034514552677
32. Boyce BF, Li J, Xing L, Yao Z. Bone Remodeling and the Role of TRAF3 in Osteoclastic Bone Resorption. Front Immunol. 2018; 9: 413259. doi:10.3389/FIMMU.2018.02263/BIBTEX
33. Christian Khoswanto. A High Sucrose Diet Affects Calcium Levels and the Number of Osteoblasts in the Wistar Rat Extraction Socket. Journal of International Dental and Medical Research. 2019; 13(1): 134-137.
34. Bowo H, Bagian A, Mulut B, Kedokteran F, Universitas Jember G. Peran hidroksiapatit sebagai bone graft dalam proses penyembuhan tulang. stomatognatic - Jurnal Kedokteran Gigi. 2011; 8(2): 118-121. Accessed January 13, 2024. https://jurnal.unej.ac.id/index.php/STOMA/article/view/2100
35. Dvorak MM, Riccardi D. Ca2+ as an extracellular signal in bone. Cell Calcium. 2004; 35(3): 249-255. doi:10.1016/J.CECA.2003.10.014
36. Pridanti, Krisnynda Ayu, Firlana Cahyaraeni, et al. Characteristics and cytotoxicity of hydroxyapatite from Padalarang–cirebon limestone as bone grafting candidate. Biochem Cell Arch. 2020; 20(2): 4727-4731.
37. Venkatesan J, Qian ZJ, Ryu B, Ashok Kumar N, Kim SK. Characterization of Hydroxyapatite derived from Bovine Bone. Asian Journal of Applied Sciences. 2015; 3(4): 569-577. doi:10.1016/J.CARBPOL.2010.08.019