ABSTRACT:
The escalating problem of antimicrobial resistance necessitates the exploration of new strategies to combat microbial infections. This paper investigates emerging antimicrobial approaches, including the discovery of new antibiotics, the development of antimicrobial peptides, and the application of bacteriophage therapy. We also examine the innovative use of nanotechnology and CRISPR-Cas systems in addressing resistant bacterial strains. The mechanisms by which bacteria develop resistance, such as genetic mutations, horizontal gene transfer, and biofilm formation, are analyzed. Through case studies, we illustrate the practical applications and efficacy of these novel strategies in both healthcare and environmental contexts. Addi- tionally, we discuss the challenges in bringing these innovations to widespread use and emphasize the need for ongoing research. Advancing our understanding and development of antimicrobial strategies is vital for outpacing resistance mechanisms and ensuring effective treatments for bacterial infections.
Cite this article:
Nazia Khan. Novel Antimicrobial Strategies and Resistance Mechanisms. Research Journal of Pharmacy and Technology. 2025;18(5):2315-0. doi: 10.52711/0974-360X.2025.00331
Cite(Electronic):
Nazia Khan. Novel Antimicrobial Strategies and Resistance Mechanisms. Research Journal of Pharmacy and Technology. 2025;18(5):2315-0. doi: 10.52711/0974-360X.2025.00331 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-5-54
REFERENCE:
1. J. M. Munita and C. A. Arias. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016; 4(2): 1-37 doi: 10.1128/microbiolspec.VMBF-0016-2015.
2. H. H. Tuse´, J. E. Tuazon, and M. J. Tuazon. Bacteriophage therapy: A potential solution to the antibiotic resistance crisis. Clin. Pharmacol. Ther. 2020; 108(40: 575–576 doi: 10.1002/cpt.1878.
3. M. A. Fischbach and C. T. Walsh. Antibiotics for Emerging Pathogens. Science. 2009; 325(5944): 1089–1093 doi: 10.1126/science.1176667.
4. Kashwani, R., Kulkarni, V., Salam, S., et al. Future of dental care: Integrating AI, metaverse, AR/VR, teledentistry, CAD and 3D printing, blockchain, and CRISPR innovations. Community Practitioner: The Journal of the Community Practitioners' and Health Visitors' Association. 2024; 21: 123-137. https://doi.org/10.5281/zenodo.11485287
5. Y. Liu et al. Nanotechnology in combating antimicrobial resistance: Current advances and future prospects. Adv. Drug Deliv. Rev. 2022; 183(10; 113168 doi: 10.1016/j.addr.2021.113168.
6. J. Davies and D. Davies. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010; 74(3): 417–433 doi: 10.1128/MMBR.00016-10.
7. J. L. Gonzalez, L. B. Castillo, and H. O. Alis. Synergistic effect of antimicrobial peptides and conventional antibiotics against resistant bacterial strains. Front. Microbiol. 2020; 11: 560744 doi: 10.3389/fmicb.2020.560744.
8. R. A. Bonomo and D. Szabo. Mechanisms of Multidrug Resistance in Acinetobacter Species and Pseudomonas aeruginosa. Clin. Infect. Dis. 2006; 43(suppl 2): S49–S56 doi: 10.1086/504477.
9. C. P. Beceiro, A. Moreno, and A. Rodriguez. Bacteriophage Therapy: A Re-Emerging Strategy in the Era of Multidrug-Resistant Bacteria. Clin. Microbiol. Rev. 2021; 34(3): 1–30 doi: 10.1128/CMR.00148-20.
10. N. Lambert and S. Sabharwal. Emerging roles of antimicrobial peptides in mitigating bacterial resistance. J. Antibiot. 2019; 72(2): 111–125 doi: 10.1038/s41429-019-0188-y.
11. S. R. J. Cairns, R. W. Kirby, and M. J. Davies. Exploring bacteriophage therapy to combat antimicrobial resistance. PLoS Pathog. 2021; 17(8): e1009899doi: 10.1371/journal.ppat.1009899.
12. P. D. Andersson and P. H. Hughes. Perspectives on antimicrobial resistance and the use of CRISPR in combating bacterial pathogens. Trends Biotechnol. 2020; 38(7): 746–758 doi: 10.1016/j.tibtech.2020.03.004.
13. A. Smith, J. Jones, and H. Taylor. Nanoparticle-based delivery systems for targeting resistant bacteria: A review. ACS Nano. 2021; 15(4): 6025–6042 doi: 10.1021/acsnano.1c01234.
14. Ravi, A., Hosvakkal, S. C., and Kumar, S. Differentiating Pathogenic Bacteria through Biochemical Markers: A Study for Clinical Applications. Oral Sphere Journal of Dental and Health Sciences. 2025; 1(1), 11-18. https://doi.org/10.5281/zenodo.14254191
15. Y. Chen, T. Zhang, and M. Li. Emerging antimicrobial strategies: The role of CRISPR-Cas systems in combating resistant strains. Curr. Opin. Microbiol. 2022; 63: 62–70 doi: 10.1016/j.mib.2021.11.007.
16. J. Wang, Y. Zhao, and X. Jiang. Nanotechnology-enhanced delivery of antimicrobial agents to combat bacterial resistance. J. Control. Release. 2021; 332: 42–58 doi: 10.1016/j.jconrel.2021.02.015.
17. R. K. Anderson et al. Exploring the use of antimicrobial peptides and phage therapy to combat bacterial biofilms and resistance. Adv. Drug Deliv. Rev. 2021; 156: 24–36 doi: 10.1016/j.addr.2020.07.019.
18. E. Brown and R. Wright. Antimicrobial resistance in biofilms: A review of current strategies and prospects. Front. Microbiol. 2020; 11: 537859 doi: 10.3389/fmicb.2020.537859.
19. L. R. Martinez and T. A. Allen. The role of bacteriophages in the fight against antimicrobial resistance. Trends Microbiol. 2022; 30(6): 489–500 doi: 10.1016/j.tim.2021.12.007.
20. P. K. Gupta and K. Sharma. Advancements in CRISPR-Cas systems and their potential applications in targeting antibiotic-resistant bacteria. Nat. Rev. Microbiol. 2021; 19(9): 593–608 doi: 10.1038/s41579-021-00543-7.
21. S. X. Johnson et al. The potential of nanotechnology in the delivery of antimicrobial agents: A comprehensive review. Biomater. Sci. 2021; 9(8): 2818–2835 doi: 10.1039/D1BM00347A.
22. H. Y. Kim, J. H. Kim, and S. M. Kim. New antibiotics and resistance mechanisms: Current status and prospects. Exp. Mol. Med. 2021; 53(3): 455–464 doi: 10.1038/s12276-021-00568-z.
23. V. K. Singh and P. Chandra. Combining antimicrobial peptides and conventional antibiotics to enhance treatment efficacy and reduce resistance. J. Appl. Microbiol. 2021; 131(20: 717–730 doi: 10.1111/jam.15021.
24. G. Martinez, R. Torres, and M. Hernandez. Nanotechnology-based approaches to enhance antimicrobial activity and overcome bacterial resistance. Curr. Opin. Biotechnol. 2021; 68: 235–245 doi: 10.1016/j.copbio.2021.01.003.
25. L. J. Palmer et al. Novel antimicrobial strategies: The application of CRISPR-Cas systems and phage therapy to combat multidrug-resistant bacteria. Front. Microbiol. 2021; 12: 650852 doi: 10.3389/fmicb.2021.650852.