Author(s): Waill Elkhateeb, Gaziea M. Soliman, Mahmoud Emam, Ghoson Daba

Email(s): ghoson.daba@yahoo.com

DOI: 10.52711/0974-360X.2025.00438   

Address: Waill Elkhateeb1, Gaziea M. Soliman2, Mahmoud Emam3, Ghoson Daba1*
1Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt.
2Department of Plant Pathology, Nematology Unit, Agriculture and Biology Research Institute, National Research Centre, Dokki, Cairo, Egypt.
3Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Cairo, Egypt.
*Corresponding Author

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
The root-knot nematode Meloidogyne is an important pest in different Solanaceous plants causing several losses. On the other hand, Hydnora abyssinca is a holoparasitic plant of ethnobotanical value while Tuber indicum and Agaricus impudicus are mushrooms exhibiting promising bioactivities. Hence, potency of hydromethanolic extracts of this plant and the two mushrooms as biocontrol agents was evaluated against Meloidogyne incognita infecting eggplant under screen house conditions. The highest nematicidal activity (86.33% and 97.00%) was recorded after 24 and 48 exposure times, respectively, when T. indicum extract was applied at 2000ppm compared to control. A positive relationship was observed between mortality, concentration, and exposure period. Under screen house conditions, T. indicum extract was also the most reducing treatment in nematode parameter achieved, at 90.15%, 70.27%, and 58.37% in juveniles in soil, galls, and egg masses, respectively at a high concentration. Additionally, reduction in nematode disease improved all plant growth parameters. Analyzing the metabolic profile of T. indicum extract using gas chromatography with a flame ionization detector identified monounsaturated, polyunsaturated and saturated fatty acids. Moreover, GC-MS analysis on metabolites after silylation identified 28 compounds. As far as we know, this is the first study describing nematicidal activity of Hydnora abyssinca and Tuber indicum.


Cite this article:
Waill Elkhateeb, Gaziea M. Soliman, Mahmoud Emam, Ghoson Daba. Nematicidal potency of Hydnora abyssinca, Tuber indicum and Agaricus impudicus extracts against Meloidogyne incognita infecting Eggplant under screen house conditions. Research Journal of Pharmacy and Technology. 2025;18(7):3057-6. doi: 10.52711/0974-360X.2025.00438

Cite(Electronic):
Waill Elkhateeb, Gaziea M. Soliman, Mahmoud Emam, Ghoson Daba. Nematicidal potency of Hydnora abyssinca, Tuber indicum and Agaricus impudicus extracts against Meloidogyne incognita infecting Eggplant under screen house conditions. Research Journal of Pharmacy and Technology. 2025;18(7):3057-6. doi: 10.52711/0974-360X.2025.00438   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-7-18


REFERENCE:
1.    Elling, A.A. Major emerging problems with minor Meloidogyne species. Phytopathol. 2013; 103: 1092–1102. https://doi.org/10.1094/phyto-01-13-0019-rvw.
2.    Hussain, T. Role of the potent microbial based bioagents and their emerging strategies for the ecofriendly management of agricultural phytopathogens. In: Natural bioactive products in sustainable agriculture. Springer, Berlin, 2020; 45-66. https://doi.org/10.1007/978-981-15-3024-1_4.
3.    Attia, M.S. et al. Application of Rhizopus microsporus and Aspergillus oryzae to enhance the defense capacity of eggplant seedlings against Meloidogyne incognita. Not Bot Horti Agrobo. 2023; 51(3): 1-23.‏  https://doi.org/10.15835/nbha51313300.
4.    Lima FS, Correa VR, Nogueira SR, Santos PR. Nematodes affecting soybean and sustainable practices for their management. In: Book: Soybean–the basis of yield, biomass and productivity, 2017; pp 95–110 https://doi.org/10.5772/67030.
5.    Ye W, Zeng Y, Kerns J. Molecular characterization and diagnosis of root-knot nematodes (Meloidogyne spp.) from turfgrasses in North Carolina, USA. PLoS One. 2015; 10(11): e0143556. https://doi.org/10.1371/journal.pone.0143556. 
6.    Adam M, Heuer H, Hallmann J. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PloS One. 2014; 9(2): e90402. https://doi.org/10.1371/journal.pone.0090402.
7.    Ab Rahman SF, Singh E, Pieterse CM, Schenk PM. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 2018; 267: 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012. 
8.    Chelinho S. et al. Toxicity of the bionematicide 1, 4-naphthoquinone on non-target soil organisms. Chemosphere, 2017; 181: 579–588. https://doi.org/10.1016/j.chemosphere.2017.04.092.
9.    Gao, H. et al. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci. Rep. 2016; 6, 28756.
10.    Elkhateeb WA, Daba GM. Soliman GM. The anti-nemic potential of mushroom against plant-parasitic nematodes. J. Microbiol. Biotechnol. 2021; 6(1): 1-6. https://doi.org/10.23880/oajmb-16000186.
11.    Guadie A, Dakone D, Unbushe D, Wang A, Xia S. Antibacterial activity of selected medicinal plants used by traditional healers in Genta Meyche (Southern Ethiopia) for the treatment of gastrointestinal disorders. J. Herb. Med., 2020; 22: p.100338. https://doi.org/10.1016/j.hermed.2020.100338.
12.    Mkala EM. Understanding the ethnobotany, chemistry, pharmacology, and distribution of genus Hydnora (Aristolochiaceae). Plants, 2021; 10(3): p.494. https://doi.org/10.3390/plants10030494.
13.    Ndamba J, Nyazema N, Makaza N, Anderson C, Kaondera KC. Traditional herbal remedies used for the treatment of urinary schistosomiasis in Zimbabwe. J. Ethnopharmacol. 1994; 42: 125-132.
14.    Elkhateeb WA, Thomas P, Kolaibe AG, Daba, GM. Hydnora Species between Folk Remedies and Ethnopharmacology: Limited Data for a Valuable Genus. Int. J. Pharm. Res. Health Sci. 2021; 9 (5): 3329-3335.
15.    Heleno SA. et al. Phenolic, polysaccharidic and lipidic fractions of mushrooms from North-eastern Portugal: chemical compounds with antioxidant properties. J. Agric. Food Chem. 2012; 60: 4634–4640. https://doi.org/10.1021/jf300739m.
16.    Heleno SA. et al. Nutritional value, bioactive compounds, antimicrobial activity and bio accessibility studies with wild edible mushrooms. LWT-Food Sci. Technol. 2015; 63: 799–806. https://doi.org/10.1016/j.lwt.2015.04.028.
17.    Tel-Cayan T, Ozturk G, Duru M. Turkoğlu A. Fatty acid profiles in wild mushroom species from Anatolia. Chem. Nat. Compd.  2017; 53: 351–353. https://doi.org/10.1007/s10600-017-1986-3.
18.    Sivanandhan S, Khusro A, Paulraj M, Ignacimuthu S, AL –Dhabi, N. Biocontrol properties of Basidiomycetes: An overview. J. Fungi, 2017; 3(1), 2 https://doi.org/10.3390/jof3010002.
19.    Niazi A, Ghafoor A. Different ways to exploit mushrooms: a review. All Life, 2021; 14: 450–460. https://doi.org/10.1016/0378-8741(94)90106-6. 
20.    Elkhateeb WA, Soliman AA, Shaheen MN, Elmahdy EM, Daba GM. Bioactive potentials of the truffle mushrooms Tirmania nivea, Tirmania pinoyi and Tuber indicum. Egypt. Pharm. J. 2024; 23(1): 94-102. https://doi.org/10.4103/epj.epj_204_23.
21.    Wu Z, Meenu M, Xu B. Nutritional value and antioxidant activity of Chinese black truffle (Tuber indicum) grown in different geographical regions in China. Lwt, 2021; 135: p.110226. https://doi.org/10.1016/j.lwt.2020.110226.
22.    Li, S.N. et al. Chemical constitutes from Tuber indicum with immunosuppressive activity uncovered by transcriptome analysis. Fitoterapia, 2024; 173: p.105773. https://doi.org/10.1016/j.fitote.2023.105773.
23.    Kwok O, Plattner R, Weisleder D, Wicklow, D. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. J. Chem. Ecol. 1992; 18(2): 127-136. https://doi.org/10.1007/bf00993748.
24.    Aslam S. Organic management of root knot nematodes in tomato with spent mushroom compost. Sarhad J. Agric. 2013; 29(1): 63-69.
25.    Akshaya SB, Krishnamoorthy AS, Nakkeeran S, Poornima K, Sivakumar U. Inhibitory potential of ethyl acetate extract from mushrooms against root-knot nematode (Meloidogyne incognita). J. Entomol. Zool. Stud., 2021; 9(1): 528-534. https://doi.org/10.22271/j.ento.2021.v9.i1h.8198.
26.    Soliman GM, Elkhateeb WA, Ting-Chi W, Ghoson GM. Mushrooms as efficient biocontrol agents against the root-knot nematode, Meloidogyne incognita. Egypt. Pharm. J. 2022; 21(1): 68-74.  https://doi.org/10.4103/epj.epj_80_21.
27.    Elkhateeb WA, Daba GM, Elnahas MO, Thomas PW, Emam M. Metabolic profile and skin-related bioactivities of Cerioporus squamosus hydromethanolic extract. Biodiversitas, 2020; 21(10): 4732-4740. https://doi.org/10.13057/biodiv/d211037.
28.    Daba GM. et al. Therapeutic potentials of n-hexane extracts of the three medicinal mushrooms regarding their anti-colon cancer, antioxidant, and hypocholesterolemic capabilities. Biodiversitas, 2020; 21(6): 2437-2445. https://doi.org/10.13057/biodiv/d210615.
29.    Eisenback JD, Hirschmann H, Sasser JN, Triantaphyllou A. A more complete characterization of the four most common species of root-knot nematodes (Meloidogyne spp.) with pictorial key. IMP Public. N.C. USA. 1981.
30.    Eggers LF, Schwudke D. Liquid Extraction: Folch. Encyclopedia of lipidomics, 2016; 12: 134-139. https://doi.org/10.1007/978-94-007-7864-1_89-1.
31.    Gomez K, Gomez K, Gomez A. Statistical procedures for agricultural research. 2nd Edn. John Wiley and Sones, New York. 2010.
32.    Mokrini F, Laasli SE, Ezrari S, Belabess Z, Lahlali, R. Plant-Parasitic Nematodes and Microbe Interactions: A Biological Control Perspective. In Sustainable Management of Nematodes in Agriculture, Vol. 2: Role of Microbes-Assisted Strategies (2024; pp. 89-126). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-52557-5_4.
33.    Tuncsoy B. Nematicidal activity of silver nanomaterials against plant-parasitic nematodes. In Silver nanomaterials for agri-food applications (2021; pp. 527-548). Elsevier,  https://doi.org/10.1016/b978-0-12-823528-7.00020-2.
34.    Topalović O, Geisen S. Nematodes as suppressors and facilitators of plant performance. New Phytol. 2023; 238(6): 2305-2312. https://doi.org/10.1111/nph.18925.
35.    Mhatre PH. et al. Nematicidal Activity of Secondary Metabolites from Soil Microbes. Sustainable Management of Nematodes in Agriculture, Vol. 2: Role of Microbes-Assisted Strategies, 2024; 297-324. https://doi.org/10.1007/978-3-031-52557-5_12.
36.    Li GH, Zhang, KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat. Prod. Rep. 2023; 40(3): 646-675. https://doi.org/10.1039/d2np00074a.
37.    Bua-art S, Saksirirat W, Hiransalee A, Kanokmedhakul S, Lekphrom R. Effect of bioactive compound from luminescent mushroom (Neonothopanusnambi Speg.) on root-knot nematode (Meloidogyne incognita Chitwood) and non-target organisms. Asia-Pacific J. Sci. Technol. 2011; 16(4): 331-341.
38.    Sangeetha C, Krishnamoorthy A, Ramakrishnan S. Testing bioactive compounds of Chinese caterpillar fungus, Ophiocordyceps spp. against root knot nematode (Meloidogyne incognita). Res. J. Agri. Sci. 2015; 6(5): 1129-1133.
39.    Faizi S. et al. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: Structure-activity relationship studies against cyst nematode Heterodera zea infective stage larvae. J. Agric. Food Chem. 2011; 59(17): 9080–9093. https://doi.org/10.1021/jf201611b.
40.    Nandakumar M, Tan M. Gamma-Linolenic and stearidonic acids are required for basal Immunity in Caenorhabditis elegans through their effects on p38 MAP kinase activity. PLoS Genet, 2008; 4: e1000273. https://doi.org/10.1371/journal.pgen.1000273.
41.    Stadler M, Mayer A, Anke H, Sterner O. Fatty acids and other compounds with nematicidal activity from cultures of Basidiomycetes. Planta medica, 1994; 60(02): 128-132. 
42.    Zhang WP, Ruan WB, Deng YY, Gao YB. Potential antagonistic effects of nine natural fatty acids against Meloidogyne incognita. Journal of agricultural and food chemistry, 2012; 60(46): 11631-11637.‏ https://doi.org/10.1021/jf3036885.
43.    Tarraf W, Laquale S, De Mastro G, D'Addabbo, T. The potential of Citrullus colocynthis oil as a biocide against phytoparasitic nematodes. Crop protection, 2019; 124: p.104843. https://doi.org/10.1016/j.cropro.2019.104843.
44.    Kerbel S, Abdelli I, Azzi H, Debras J, Kellouche A. Fatty acid composition and biological activity of four olive oils from Kabylia (Algeria) against Rhyzopertha dominica (Coleoptera: Bostrychidae) infesting wheat seeds. Studia Universitatis Babes-Bolyai. Biologia, 2021; 66: 51-72. https://doi.org/10.24193/subbbiol.2021.1.01.
45.    Ohri P, Pannu S. Effect of phenolic compounds on nematodes- A review. J. Appl. Nat. Sci. 2010; 2(2): 344-350. https://doi.org/10.31018/jans.v2i2.144.
46.    Aoudia H, Ntalli NG, Aissani N, Yahiaoui-Zaidi R, Caboni P. Nematotoxic phenolic compounds from Melia azedarach against Meloidogyne incognita. J. Agric. Food Chem. 2012; 60: 11675–11680. https://doi.org/10.1021/jf3038874.
47.    Mahajan R, Kaur DJ, Bajaj KL. Nematicidal activity of phenolic compounds against Meloidogyne incognita. Nematol. Mediterr. 1992; 20: 217-219. https://doi.org/10.1163/187529286x00101.
48.    Thilakarathna SH, Rupasinghe HP, Needs PW. Apple peel bioactive rich effectively inhibit in vitro human LDL cholesterol oxidation. Food Chem. 2013; 138: 463–470. https://doi.org/10.1016/j.foodchem.2012.09.121.
49.    Aissani N, Balti R, Sebai H. Potent nematicidal activity of phenolic derivatives on Meloidogyne incognita. J. Helminthol., 2018; 92(6): 668-673. https://doi.org/10.1017/s0022149x17000918.
50.    Bakr RA, Mahdy ME, Mai Nagah Al-Hendy MN, Mousa EM. Spent Mushroom as Eco-friendly Management Strategy of Root-knot Nematodes, Meloidogyne spp. Infecting Eggplant. Egypt. J. Crop Protec. 2022; 17(1): 15-26. https://doi.org/10.21608/ejcp.2022.109681.1000.
51.    Velasco-Azorsa R. Chemical characterization of plant extracts and evaluation of their nematicidal and phytotoxic potential. Molecules, 2021; 26(8): 2216.‏  https://doi.org/10.3390/molecules26082216.
52.    Liu R. et al. Identification of nematicidal metabolites from Purpureocillium lavendulum. Microorganisms, 2022; 10(7): p.1343. https://doi.org/10.3390/microorganisms10071343.
53.    Anwar MA. et al. Nematicidal Potential of the Galinsoga parviflora: Nematicidal Potential of Galinsoga parviflora. Biol. Sci., 2011; 54(2): 83-87. https://doi.org/10.52763/pjsir.biol.sci.54.2.2011.83.87.
54.    Barbosa LC, Barcelos FF, Demuner AJ. Santos MA. Investigation-Research: Chemical constituents from Mucuna aterrima with activity against Meloidogyne incognita and Heterodera glycines. Nematropica, 1999; 81-88.
55.    Hernández-Carlos B. Chemical characterization of plant extracts and evaluation of their nematicidal and phytotoxic potential. Molecules, 2021; 26(8): p.2216. https://doi.org/10.3390/molecules26082216.
56.    Sunny NE, Kumar SR, Kumar SV. A review on chitinase synthesis from varied sources and its applications towards environment. Res J Pharm Technol. 2018; 11(9): 4200-4208 https://doi.org/10.5958/0974-360x.2018.00770.9.
57.    Sharma SG, Sharma M, Guleria P. Biological Control of Phytophthora: The Potential Role of Mycoviruses. Res J Pharm Technol. 2019; 12(8): 3984-3988. https://doi.org/10.5958/0974-360x.2019.00686.3.
58.    Karnwal A, Dohroo A, Sharma S. Analysing the Biocontrol Attribute of Indigenous Mushroom concentrates against Pathogenic bacterial spp. Res J Pharm Technol. 2020; 13(1): 173-177. https://doi.org/10.5958/0974-360x.2020.00035.9.
59.    Mohamed MA, Elkhateeb WA, Taha MA. Daba GM. New strategies in optimization of Rapamycin production by Streptomyces hygroscopicus ATCC 29253. Res J Pharm Technol. 2019; 12(9): 4197-4204. https://doi.org/10.5958/0974-360x.2019.00722.4.
60.    Elkhateeb WA, Mohamed MA, Fayad W, Emam M, Nafady IM, Daba GM. Molecular Identification, Metabolites profiling, Anti-breast cancer, Anti-colorectal cancer, and antioxidant potentials of Streptomyces zaomyceticus AA1 isolated from a remote bat cave in Egypt. Res J Pharm Technol. 2020; 13(7): 3072-3080. https://doi.org/10.5958/0974-360x.2020.00545.4.
61.    Khatua S, Paul S, Acharya K. Mushroom as the potential source of new generation of antioxidant: a review. Res J Pharm Technol. 2013; 6(5): 496-505. https://doi.org/10.37473/dac/10.3390/molecules26041142.
62.    ALKolaibe AG, Elkhateeb WA, Elnahas MO, El-Manawaty M, Deng CY, Ting-Chi W, Daba GM.  Wound healing, anti-pancreatic cancer, and α-amylase inhibitory potentials of the edible mushroom, Metacordyceps neogunnii. Res J Pharm Technol. 2021; 14(10): 5249-5253. https://doi.org/10.52711/0974-360x.2021.00914.
63.    Kermasha HSN. Effect of Fermentation Oyster Mushrooms (Pleurotus ostreatus) on Grain Barly contaminated with Fungus exudate toxins Fusarium sporotrichioides and the inhibition growth and Degradation Toxins produced by it. Res J Pharm Technol. 2019; 12(12): 5677-5682. https://doi.org/10.5958/0974-360x.2019.00982.x.
64.    Kusmiati M, Nurpalah R, Sukmawan YP, Aryantha I, Gusdinar T. Pharmacological activity of the Ethanolic extract of Lingzhi to the Immune system. Res J Pharm Technol. 2023; 16(10): 4907-4910. https://doi.org/10.52711/0974-360x.2023.00795.
65.    Elkhateeb W, Faried A, Dina E, Elnahas MO, Nafady I, Daba G. Exploring the Dominance of Fungal genera in some Egyptian novel sources. Res J Pharm Technol. 2024; 17(10): 4727- 4738. https://doi.org/10.52711/0974-360X.2024.00729.
66.    Daba G, Elkhateeb W, Soliman TN, Negm El-Dein A, Zendo T. Improving the Functionality of Yogurt after Fortification with a Synbiotic Combination of a Potential Probiotic and Bacteriocin-Producing Bacteria and Hydnora abyssinica Phytosomes. Processes, 2024; 12(4): 727-746. https://doi.org/10.3390/pr12040727.
67.    Thomas PW, Elkhateeb WA, Daba GM. Chaga (Inonotus obliquus): a medical marvel but a conservation dilemma. Sydowia, 2020; 72: 123-130. https://doi.org/10.12905/0380.sydowia72-2020-0123.
68.    Thomas PW, Elkhateeb WA, Daba GM. Truffle and truffle-like fungi from continental Africa. Acta Mycologica, 2019; 54(2): 1132-1146 https://doi.org/10.5586/am.1132.
69.    Elkhateeb WA, Daba GM, El-Dein AN, Sheir DH, Fayad W, Shaheen MN, Elmahdy EM. Wen TC. Insights into the in-vitro hypocholesterolemic, antioxidant, antirotavirus, and anticolon cancer activities of the methanolic extracts of a Japanese lichen, Candelariella vitellina, and a Japanese mushroom, Ganoderma applanatum. Egypt. Pharm. 2020; J. 19(1): 67-73.  https://doi.org/10.4103/epj.epj_56_19.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available