Author(s): S. A. Bhagat, S. L. Patwekar, M. S. Gajale, R. B. Rajmane

Email(s): Email ID Not Available

DOI: 10.52711/0974-360X.2025.00489   

Address: S. A. Bhagat1*, S. L. Patwekar2, M. S. Gajale3, R. B. Rajmane4
1Research Scholar, Department of Pharmaceutics, School of Pharmacy, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra Pin: 431606.
2Associate Professor, Department of Pharmaceutics, School of Pharmacy, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra Pin:431606.
3Research Scholar, Vidyabharti College of Pharmacy, SGBAU, Amravati Maharashtra Pin: 444602.
4Assistant Professor, Department of Pharmaceutics, ASPM’s K. T. Patil College of Pharmacy, Dharashiv, Maharashtra Pin: 431501.
*Corresponding Author E-mail:

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
Nanotechnology is pivotal in developing diverse nanomaterials with applications across various fields, including medicine, electronics, and environmental science. After the carbon nanotubes (CNTs) discovery bythe scientist“Iijima” in 1991, there has been a surge of interest in low-dimensional nanomaterials, particularly metal oxide nanotubes (MO-NT), owing to their unique propertiesand diverse applications. Among all, titanium dioxide (TiO2) nanotubes (TNT) have garnered noteworthyconsideration in recent years due to their remarkable features,including nanosized, large porosity and surface area (SA), crystalline structure, and high stability. It has versatile utility in the electrochemical, environmental, and biomedical fields. Thus, this article briefly deliberateson the progress of nanotube research following the discovery of TNTs, highlighting the growing importance of MO-NTs. The review also explores synthesis methods, including template-assisted, sol-gel, hydrothermal, and electrochemical anodization (EAD), elucidating their benefits and applications. Furthermore, the present work delves into the mechanisms for targeted therapeutic action either by surface functionalization using specific ligands or by external triggers using pH, light, magnetic field, temperature, etc. These biomedical applications are supported by evidence from cell line studies and animal models. Finally, the article addresses existing challenges and regulatory considerations and offers insights into future perspectives for the continued advancement and application of TNT in targeted drug delivery (TDD) and beyond.


Cite this article:
S. A. Bhagat, S. L. Patwekar, M. S. Gajale, R. B. Rajmane. Innovative Drug Delivery with TiO2 Nanotubes: Targeted Approaches and Applications. Research Journal of Pharmacy and Technology. 2025;18(7):3385-5. doi: 10.52711/0974-360X.2025.00489

Cite(Electronic):
S. A. Bhagat, S. L. Patwekar, M. S. Gajale, R. B. Rajmane. Innovative Drug Delivery with TiO2 Nanotubes: Targeted Approaches and Applications. Research Journal of Pharmacy and Technology. 2025;18(7):3385-5. doi: 10.52711/0974-360X.2025.00489   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-7-69


7. REFERENCES:
1.    Dronov A, Gavrilin I, Kirilenko E, Dronova D, Gavrilov S. Investigation of Anodic Tio2 Nanotube Composition With High Spatial Resolution AES and ToF SIMS. Applied Surface Science. 2018; March 15; 434: 148-54. doi:10.1016/j.apsusc.2017.10.132
2.    Valerini D, Hernández S, Di Benedetto F, et al. Sputtered WO3 films for water-splitting applications. Materials Science in Semiconductor Processing. 2016; Feb; 42: 150-4. doi:10.1016/j.mssp.2015.09.013
2.    Dong J, Liu Z, Dong J, et al. Self-organized ZnO nanorods prepared by anodization of zinc in NaOH electrolyte. RSC Advances. 2016; July 27; 6(77): 72968-74. doi:10.1039/C6RA16995C
3.    Suman, Chahal S, Kumar A, et al. Zn Doped α-Fe2O3: An Efficient Material for UV Driven Photocatalysis and Electrical Conductivity. Crystals. 2020; April 1; 10(4): 273. doi:10.3390/cryst10040273
4.    Butmanov D, Savchuk T, Gavrilin I, et al. Temperature electrolyte influences on the phase composition of anodic CuOx nanostructures. Physica E: Low-dimensional Systems and Nanostructures. 2023; Jan; 146: 115533. doi:10.1016/j.physe.2022.115533
5.    Zakir O, Ait-Karra A, Idouhli R, et al. A review on TiO2 nanotubes: synthesis strategies, modifications, and applications. Journal of Solid State Electrochemistry. 2023; June 2; 27(9): 2289-307. doi:10.1007/s10008-023-05538-2
6.    bd268bd268Lee M, Kim T, Bae C, et al. Fabrication and applications of metal-oxide nano-tubes. JOM. 2010; Apr 17; 62(4): 44-9. doi:10.1007/s11837-010-0058-y
7.    Sofiane S, Bilel M. Effect of specific surface area on photoelectrochemical properties of TiO2 nanotubes, nanosheets and nanowires coated with TiC thin films. Journal of Photochemistry and Photobiology A: Chemistry. 2016; Jun 30; 324: 126-33. doi:10.1016/j.jphotochem.2016.03.030
8.    Boda MA, Shah MA. Fabrication mechanism of compact TiO 2 nanotubes and their photo-electrochemical ability. Material Research Express. 2017; July 25; 4(7): 075908. doi:10.1088/2053-1591/aa7cd2
9.    Vasudevan S, Banu FS, Nallaiyan R. Evaluation of electrochemical and bioactive performance of tailored TiO2 nanotubes for orthopaedic application. Surface and Coatings Technology. 2024; Mar 30; 480: 130506. doi:10.1016/j.surfcoat.2024.130506
10.    Purusothaman M, Sivaprakash V, Bruno AD, et al. Fabrication of TiO 2 nanotubes with effect of water and in‐situ condition for biomedical application. Environmental Quality Management. 2023; July 2: 22048. doi:10.1002/tqem.22048
11.    Wang Y, Yuan L, Yao C, et al. Cytotoxicity Evaluation of pH-Controlled Antitumor Drug Release System of Titanium Dioxide Nanotubes. Journal of Nanoscience and Nanotechnology 2015; June 6; 15(6): 4143-8. doi:10.1166/jnn.2015.9792
12.    López-Pavón L, Dagnino-Acosta D, López-Cuéllar E, et al. Synthesis of nanotubular oxide on Ti–24Zr–10Nb–2Sn as a drug-releasing system to prevent the growth of Staphylococcus aureus. Chemical Papers. 2021; Jan 10; 75(6): 2441-50. doi:10.1007/s11696-020-01495-6
13.    Ion R, Necula MG, Mazare A, et al. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. CMC. 2020; Feb 1; 27(6): 854-902. doi:10.2174/0929867326666190726123229
14.    Safavipour M, Kharaziha M, Amjadi E, et al. TiO2 nanotubes/reduced GO nanoparticles for sensitive detection of breast cancer cells and photothermal performance. Talanta. 2020 Feb 1;208:120369. doi:10.1016/j.talanta.2019.120369
15.    He Y, Li K, Yang X, et al. Calcium Peroxide Nanoparticles‐Embedded Coatings on Anti‐Inflammatory TiO 2 Nanotubes for Bacteria Elimination and Inflammatory Environment Amelioration. Small. 2021; Oct 19; 17(47): 2102907. doi:10.1002/smll.202102907
16.    Yang J, Zhang H, Chan SM, et al. TiO2 Nanotubes Alleviate Diabetes-Induced Osteogenetic Inhibition. International Journal of Nanomedicine. 2020; May 18; 15(2020): 3523-37. doi:10.2147/IJN.S237008
17.    Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology. 2022; June 7;20(1):262. doi:10.1186/s12951-022-01477-8
18.    Negrescu AM, Killian MS, Raghu SNV, Schmuki P, Mazare A, Cimpean A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. Journal of Functional Biomaterials. 2022; Dec 5; 13(4): 274. doi:10.3390/jfb13040274
19.    Raj CC, Prasanth R. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. Journal of Power Sources. 2016 June 17;317:120-32. doi:10.1016/j.jpowsour.2016.03.016
20.    López De Dicastillo C, Patiño Vidal C, Falcó I, Sánchez G, Márquez P, Escrig J. Antimicrobial Bilayer Nanocomposites Based on the Incorporation of As-Synthetized Hollow Zinc Oxide Nanotubes. Nanomaterials. 2020; Mar 11; 10(3): 503. doi:10.3390/nano10030503
21.    Rajendrachari S, Ramakrishna D. Functionalized nanomaterial-based electrochemical sensors: A sensitive sensor platform. In: Functionalized Nanomaterial-Based Electrochemical Sensors. Elsevier; 2022:3-25. doi:10.1016/B978-0-12-823788-5.00010-7
22.    Aal NA, Al-Hazmi F, Al-Ghamdi AA, et al. Novel rapid synthesis of zinc oxide nanotubes via hydrothermal technique and antibacterial properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; Jan 25; 135: 871-7. doi:10.1016/j.saa.2014.07.099
23.    Lv B, Xu Y, Wu D, Sun Y. Preparation and properties of magnetic iron oxide nanotubes. Particuology. 2008 Oct;6(5):334-339. doi:10.1016/j.partic.2008.04.006
24.    Paragodaarachchi A, Medvedovsky S, Fang J, et al. Iron oxide and various metal oxide nanotubes engineered by one-pot double galvanic replacement based on reduction potential hierarchy of metal templates and ion precursors. RSC Advances. 2020 Sept 15;10(63):38617-20. doi:10.1039/D0RA07482A
25.    Azevedo J, Fernández-García MP, Magén C, et al. Double-walled iron oxide nanotubes via selective chemical etching and Kirkendall process. Scientific Reports. 2019 Aug 19;9(1):11994. doi:10.1038/s41598-019-47704-5
26.    Chen L, Xie J, Aatre KR, et al. Iron Oxide Magnetic Nanotubes and Their Drug Loading and Release Capabilities. Journal of Nanotechnology in Engineering and Medicine. 2010 Feb;1(1):011009. doi:10.1115/1.4000435
27.    Sekino T. Synthesis and Applications of Titanium Oxide Nanotubes. In: Kijima T, ed. Inorganic and Metallic Nanotubular Materials. Topics in Applied Physics. Springer Berlin Heidelberg; 2010: 117: 17-32. 
28.    Roy P, Berger S, Schmuki P. TiO 2 Nanotubes: Synthesis and Applications. Angew Chem Int Ed. 2011; 50(13): 2904-2939. 
29.    Jafari EM, Araghchi M, Daneshmand H. Aluminum oxide nanotubes fabricated via laser ablation process: Application as superhydrophobic surfaces. Optics and Laser Technology. 2022 Nov; 155: 108420. doi:10.1016/j.optlastec.2022.108420
30.    Yang Z, Rong Q, Bao T, et al. Synthesis of dual-functional CuO nanotubes for high-efficiently photoelectrochemical and colorimetric sensing of H2O2. Analytica Chimica Acta. 2022; March 22; 1199: 339598. doi:10.1016/j.aca.2022.339598
31.    Xu X, Wang W, Lu L, et al. Magnesium oxide nanotube as a promising material for detection of methamphetamine drug: theoretical study. Journal of Molecular Modeling. 2022 May 14; 28(6): 150. doi:10.1007/s00894-022-05151-6
32.    Ogihara H, Sadakane M, Nodasaka Y, et al. Shape-Controlled Synthesis of ZrO 2, Al 2 O 3, and SiO 2 Nanotubes Using Carbon Nanofibers as Templates. Chemistry of Materials. 2006; Sept 20; 18(21): 4981-3. doi:10.1021/cm061266t
33.    Tang J, Dai X, Wu F, et al. A simple and efficient one-pot synthesis of SiO2 nanotubes with stable structure and controlled aspect ratios for anode materials of lithium-ion batteries. Ionics. 2020; Oct 11; 26(2): 639-48. doi:10.1007/s11581-019-03246-4
34.    Eddy DR, Permana MD, Sakti LK, et al. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials. 2023; Feb 12; 13(4): 704. doi:10.3390/nano13040704
35.    Das R, Ambardekar V, Pratim Bandyopadhyay P. Titanium Dioxide and Its Applications in Mechanical, Electrical, Optical, and Biomedical Fields. In: Muhammad Ali H, ed. Titanium Dioxide - Advances and Applications. IntechOpen, 2022. 
36.    Fen LB, Han TK, Nee NM, et al. Physico-chemical properties of titania nanotubes synthesized via hydrothermal and annealing treatment. Applied Surface Science. 2011; Oct 15; 258(1): 431-5. doi:10.1016/j.apsusc.2011.08.115
37.    Chen S, Zhu S, Lu D. Titanium dioxide nanotubes as solid-phase extraction adsorbent for on-line preconcentration and determination of trace rare earth elements by inductively coupled plasma mass spectrometry. Microchemical Journal. 2013 Sept;110:89-93. doi:10.1016/j.microc.2013.02.010
38.    García-Valverde MT, Lucena R, Cárdenas S, et al. Titanium-dioxide nanotubes as sorbents in (micro)extraction techniques. TrAC Trends in Analytical Chemistry. 2014; Nov; 62: 37-45. doi:10.1016/j.trac.2014.06.015
39.    Gulati K, Maher S, Chandrasekaran S, et al. Conversion of titania (TiO 2 ) into conductive titanium (Ti) nanotube arrays for combined drug-delivery and electrical stimulation therapy. Journal of Material Chemistry B. 2016; Nov 20; 4(3): 371-5. doi:10.1039/C5TB02108A
40.    Bhadra CU, Jonas Davidson D, Henry Raja D. Fabrication of titanium oxide nanotubes by varying the anodization time. Materials Today: Proceedings. 2020; 33: 2711-5. doi:10.1016/j.matpr.2020.01.455
41.    Discovery and applications of photocatalysis – Creating a comfortable future by making use of light energy. Japan Nanonet Bulletin. 2005; (44).
42.    Tahir MB, Sohaib M, Sagir M, et al. Role of Nanotechnology in Photocatalysis. In: Encyclopedia of Smart Materials. Elsevier; 2022; Nov 1: 578-89. doi:10.1016/B978-0-12-815732-9.00006-1
43.    Papanicolaou GC, Portan DV. Carbon and titanium dioxide nanotube polymer composite manufacturing – characterization and interphase modeling. In: Structural Integrity and Durability of Advanced Composites. Elsevier; 2015: 735-61. doi:10.1016/B978-0-08-100137-0.00027-4
44.    Fu Y, Mo A. A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications. Nanoscale Research Letters. 2018; June 28; 13(1): 187. doi:10.1186/s11671-018-2597-z
45.    Grimes CA. Synthesis and application of highly ordered arrays of TiO2 nanotubes. Journal of Material Chemistry. 2007; March 7; 17(15): 1451. doi:10.1039/b701168g
46.    Zhu XY, Wang BR, Gu Y, et al. Novel Nanofluidic Cells Based on Nanowires and Nanotubes for Advanced Chemical and Bio-Sensing Applications. Nanomaterials. 2021; Jan 3; 11(1): 90. doi:10.3390/nano11010090
47.    Wawrzyniak J, Grochowska K, Karczewski J, et al. The geometry of free-standing titania nanotubes as a critical factor controlling their optical and photoelectrochemical performance. Surface and Coatings Technology. 2020; May 15; 389: 125628. doi:10.1016/j.surfcoat.2020.125628
48.    Kulkarni M, Šepitka J, Junkar I, et al. Mechanical properties of anodic titanium dioxide nanostructures. Materials and Tehnology. 2021; 55(1): 19-24. doi:10.17222/mit.2020.109
49.    Abbas WA, Abdullah IH, Ali BA, et al. Recent advances in the use of TiO 2 nanotube powder in biological, environmental, and energy applications. Nanoscale Advances. 2019; July 11; 1(8): 2801-16. doi:10.1039/C9NA00339H
50.    Arruda LB, Santos CM, Orlandi MO, et al. Formation and evolution of TiO2 nanotubes in alkaline synthesis. Ceramics International. 2015; Mar; 41(2): 2884-91. doi:10.1016/j.ceramint.2014.10.113
51.    Naji SA, Jafarzadeh Kashi TS, Pourhajibagher M, et al. Evaluation of Antimicrobial Properties of Conventional Poly(Methyl Methacrylate) Denture Base Resin Materials Containing Hydrothermally Synthesised Anatase TiO2 Nanotubes against Cariogenic Bacteria and Candida albicans. Iran Journal of Pharmaceutical Research. 2018;17(Suppl2):161-72.
52.    Cossuet T, Rapenne L, Renou G, et al. Template-Assisted Growth of Open-Ended TiO 2 Nanotubes with Hexagonal Shape Using Atomic Layer Deposition. Crystal Growth and Design. 2021 Dec 3;21(1):125-32. doi:10.1021/acs.cgd.0c00952
53.    Li H, Zhou Q, Gao Y, et al. Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Research. 2015 Sept 23;8(3):900-6. doi:10.1007/s12274-014-0571-3
54.    Michailowski A, AlMawlawi D, Cheng G, et al. Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chemical Physics Letters. 2001; Nov 23; 349(1-2): 1-5. doi:10.1016/S0009-2614(01)01159-9
55.    Yuan L, Meng S, Zhou Y, Yue Z. Controlled synthesis of anatase TiO2 nanotube and nanowire arrays via AAO template-based hydrolysis. Journal of Materials Chemistry A. 2013; 1(7): 2552-7 doi:10.1039/c2ta00709f
56.    Jiang WF, Ling YH, Hao SJ, et al. In Situ Template Synthesis of TiO2 Nanotube Array Films. Key Engineering Materials. 2007 Apr;336-338:2200-2. doi:10.4028/www.scientific.net/KEM.336-338.2200
57.    Liang YC, Wang CC, Kei CC, Hsueh YC, Cho WH, Perng TP. Photocatalysis of Ag-Loaded TiO 2 Nanotube Arrays Formed by Atomic Layer Deposition. The Journal of Physical Chemistry C. 2011 Apr 27;115(19):9498-502. doi:10.1021/jp202111p
58.    5Liu L, Lim SY, Law CS, et al. Engineering of Broadband Nanoporous Semiconductor Photonic Crystals for Visible-Light-Driven Photocatalysis. ACS Appl Mater Interfaces. 2020 Dec 10;12(51):57079-57092. doi:10.1021/acsami.0c16914
59.    Lim SY, Hedrich C, Jiang L, et al. Harnessing Slow Light in Optoelectronically Engineered Nanoporous Photonic Crystals for Visible Light-Enhanced Photocatalysis. ACS Catalysis. 2021; Oct 11; 11(21): 12947-62. doi:10.1021/acscatal.1c03320
60.    Tsvetkov N, Larina L, Ku Kang J, et al. Sol-Gel Processed TiO2 Nanotube Photoelectrodes for Dye-Sensitized Solar Cells with Enhanced Photovoltaic Performance. Nanomaterials. 2020; Feb 10; 10(2): 296. doi:10.3390/nano10020296
61.    Pang YL, Bhatia S, Abdullah AZ. Process behavior of TiO2 nanotube-enhanced sonocatalytic degradation of Rhodamine B in aqueous solution. Separation and Purification Technology. 2011; Mar 4; 77(3): 331-8. doi:10.1016/j.seppur.2010.12.023
62.    Kovalenko DL, Dobromir M, Vaskevich VV, et al. Sol-gel Synthesis TiO2 Nanotubes Based on ZnO Nanorods, for Use in Solar Cells. In: Khakhomov S, Semchenko I, Demidenko O, Kovalenko D, eds. Research and Education: Traditions and Innovations. Vol 422. Lecture Notes in Networks and Systems. Springer Singapore; 2022: pp. 251-258. 
63.    Liu Z, Liu C, Ya J, Lei E. Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells. Renewable Energy. 2011; Apr; 36(4): 1177-81. doi:10.1016/j.renene.2010.09.019
64.    Alkanad K, Hezam A, Al-Zaqri N, et al. One-Step Hydrothermal Synthesis of Anatase TiO 2 Nanotubes for Efficient Photocatalytic CO 2 Reduction. ACS Omega. 2022; Oct 18; 7(43): 38686-38699. doi:10.1021/acsomega.2c04211
65.    López Zavala MÁ, Lozano Morales SA, Ávila-Santos M. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature. Heliyon. 2017; Nov 13; 3(11): e00456. doi:10.1016/j.heliyon.2017.e00456
66.    Aliofkhazraei M, Makhlouf ASH. Properties and Characterization Techniques. In: Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods. Springer International Publishing; 2016.
67.    Zhang S, Li Y, Xu P, Liang K. Effect of Anodization Parameters on the Surface Morphology and Photoelectrochemical Properties of TiO2 Nanotubes. International Journal of Electrochemical Science. 2017; Nov; 12(11): 10714-25. doi:10.20964/2017.11.80
68.    Chen J, Lin J, Chen X. Self-Assembled TiO 2 Nanotube Arrays with U-Shaped Profile by Controlling Anodization Temperature. Journal of Nanomaterials. 2010; Jan; 2010: 1-4. doi:10.1155/2010/753253
69.    Deen KM, Farooq A, Raza MA, et al. Effect of electrolyte composition on TiO2 nanotubular structure formation and its electrochemical evaluation. Electrochimica Acta. 2014; Jan 20; 117: 329-335. doi:10.1016/j.electacta.2013.11.108
70.    Regonini D, Clemens FJ. Anodized TiO2 Nanotubes: Effect of anodizing time on film length, morphology and photoelectrochemical properties. Materials Letters. 2015; March 1; 142: 97-101. doi:10.1016/j.matlet.2014.11.145
71.    Kulkarni M, Mazare A, Schmuki P, et al. Influence of Anodization Parameters On Morphology Of TiO2 Nanostructured Surfaces. Advanced Materials Letters. 2016; Jan; 7(1): 23-8. doi:10.5185/amlett.2016.6156
72.    Isik E, Tasyurek LB, Isik I, et al. Synthesis and analysis of TiO2 nanotubes by electrochemical anodization and machine learning method for hydrogen sensors. Microelectronic Engineering. 2022; June 1; 262: 111834. doi:10.1016/j.mee.2022.111834
73.    Sivaprakash V, Narayanan R. Synthesis of TiO2 nanotubes via electrochemical anodization with different water content. Materials Today: Proceedings. 2021; 37: 142-6. doi:10.1016/j.matpr.2020.04.657
74.    Cheng Y, Yang H, Yang Y, et al. Progress in TiO 2 nanotube coatings for biomedical applications: a review. Journal of Materials Chemistry B. 2018; Mar 1; 6(13): 1862-86. doi:10.1039/C8TB00149A
75.    Lai M, Cai K, Zhao L, Chen X, Hou Y, Yang Z. Surface Functionalization of TiO 2 Nanotubes with Bone Morphogenetic Protein 2 and Its Synergistic Effect on the Differentiation of Mesenchymal Stem Cells. Biomacromolecules. 2011; Mar 7; 12(4): 1097-105. doi:10.1021/bm1014365
76.    Torres CC, Campos CH, Diáz C, et al. PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications. Materials Science and Engineering: C. 2016; Aug 1; 65: 164-71. doi:10.1016/j.msec.2016.03.104
77.    Li L, Xie C, Xiao X. Polydopamine modified TiO2 nanotube arrays as a local drug delivery system for ibuprofen. Journal of Drug Delivery Science and Technology. 2020; Apr; 56: 101537. doi:10.1016/j.jddst.2020.101537
78.    Khoshnood N, Zamanian A, Massoudi A. Mussel-inspired surface modification of titania nanotubes as a novel drug delivery system. Materials Science and Engineering: C. 2017; Aug 1; 77: 748-54. doi:10.1016/j.msec.2017.03.293
79.    Kim GH, Kim ll S, Park SW, et al. Evaluation of Osteoblast-Like Cell Viability and Differentiation on the Gly-Arg-Gly-Asp-Ser Peptide Immobilized Titanium Dioxide Nanotube via Chemical Grafting. Journal of Nanoscience and Nanotechnology. 2016; Feb; 16(2): 1396-1399. doi:10.1166/jnn.2016.11916
80.    Mohan L, Anandan C, Rajendran N. Drug release characteristics of quercetin-loaded TiO 2 nanotubes coated with chitosan. International Journal of Biological Macromolecules. 2016; Dec; 93: 1633-8. doi:10.1016/j.ijbiomac.2016.04.034
81.    Liu Y, Xie C, Zhang F, et al. pH-Responsive TiO 2 Nanotube Drug Delivery System Based on Iron Coordination. Journal of Nanomaterials. 2019; Dec 28; 2019: 1-7. doi:10.1155/2019/6395760
82.    Lee Y, Huang J, Bing Z, et al. pH-responsive cinnamaldehyde-TiO2 nanotube coating: fabrication and functions in a simulated diabetes condition. Journal of Materials Science: Materials in Medicine. 2022; Sept 5; 33(9): 63. doi:10.1007/s10856-022-06683-2
83.    Zhang F, Xie C, Xiao X. pH‐responsive release of TiO 2 nanotube arrays/mesoporous silica composite based on tannic acid‐Fe(III) complex coating. Micro and Nano Letters. 2020; Oct 1; 15(12): 797-801. doi:10.1049/mnl.2019.0316
84.    Moon KS, Bae JM, Jin S, et al. Infrared-Mediated Drug Elution Activity of Gold Nanorod-Grafted TiO2Nanotubes. Journal of Nanomaterials. 2014; July 24;2014:1-8. doi:10.1155/2014/750813
85.    Moon KS, Park YB, Bae JM, et al. Near-infrared laser-mediated drug release and antibacterial activity of gold nanorod–sputtered titania nanotubes. J Tissue Eng. 2018 July 26;9. doi:10.1177/2041731418790315
86.    Hasanzadeh Kafshgari M, Kah D, Mazare A, et al. Anodic Titanium Dioxide Nanotubes for Magnetically Guided Therapeutic Delivery. Scientific Reports. 2019; Sept 17; 9(1): 13439. doi:10.1038/s41598-019-49513-2
87.    Aw MS, Addai-Mensah J, Losic D. Magnetic-responsive delivery of drug-carriers using titania nanotube arrays. Journal of Materials Chemistry. 2012; Feb 28; 22(14): 6561. doi:10.1039/c2jm16819g
88.    Cai K, Jiang F, Luo Z, Chen X. Temperature‐Responsive Controlled Drug Delivery System Based on Titanium Nanotubes. Advanced Engineering Materials. 2010 Sept 8;12(9). doi:10.1002/adem.201080015
89.    Li B, Zhang L, Wang D, et al. Thermo-sensitive hydrogel on anodized titanium surface to regulate immune response. Surface and Coatings Technology. 2021 Jan 15;405:126624. doi:10.1016/j.surfcoat.2020.126624
90.    A L, Xu W, Zhao J, et al. Surface functionalization of TiO2 nanotubes with minocycline and its in vitro biological effects on Schwann cells. BioMedical Engineering OnLine. 2018 June 20; 17(1): 88. doi:10.1186/s12938-018-0520-6
91.    Zhang Y, Huang T, Lv W, et al. Controlled growth of titanium dioxide nanotubes for doxorubicin loading and studies of in vitro antitumor activity. Frontiers in Bioengineering and Biotechnology. 2023; May 11; 11: 1201320. doi:10.3389/fbioe.2023.1201320
92.    Li T, Wang N, Chen S, et al. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide. International Journal of Nanomedicine. 2017; Apr 12; 12: 2995-3007. doi:10.2147/IJN.S128775
93.    Faria HAM, De Queiroz AAA. A novel drug delivery of 5-fluorouracil device based on TiO 2 /ZnS nanotubes. Materials Science and Engineering: C. 2015 Nov 1;56:260-8. doi:10.1016/j.msec.2015.06.008
94.    Tang K, Su H, Qu Z. Preparation of honokiol-loaded titanium dioxide nanotube drug delivery system and its effect on CAL-27 cells. Frontiers in Bioengineering and Biotechnology. 2023 Aug 3;11:1249349. doi:10.3389/fbioe.2023.1249349
95.    Yao S, Feng X, Lu J, et al. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO 2 nanotubes. Nanotechnology. 2018; Apr 16;29(24):244003. doi:10.1088/1361-6528/aabac1
96.    Negrescu AM, Mitran V, Draghicescu W, et al. TiO2 Nanotubes Functionalized with Icariin for an Attenuated In Vitro Immune Response and Improved In Vivo Osseointegration. Journal of Functional Biomaterials. 2022 Apr 14;13(2):43. doi:10.3390/jfb13020043
97.    Kong K, Chang Y, Hu Y, et al. TiO2 Nanotubes Promote Osteogenic Differentiation Through Regulation of Yap and Piezo1. Frontiers in Bioengineering and Biotechnology. 2022; Apr 7; 10: 872088. doi:10.3389/fbioe.2022.872088
98.    Wu F, Xu J, Yan R, et al. In vitro and in vivo evaluation of antibacterial activity of polyhexamethylene guanidine (PHMG)-loaded TiO 2 nanotubes. Biomedical Materials. 2020; June 22; 15(4): 045016. doi:10.1088/1748-605X/ab7e79
99.    Gulla S, Reddy VC, Araveti PB, et al. Synthesis of titanium dioxide nanotubes (TNT) conjugated with quercetin and its in vivo antitumor activity against skin cancer. Journal of Molecular Structure. 2022 Feb 5;1249:131556. doi:10.1016/j.molstruc.2021.131556
100.    Chen B, Liang Y, Song Y, et al. Photothermal-Controlled Release of IL-4 in IL-4/PDA-Immobilized Black Titanium Dioxide (TiO2) Nanotubes Surface to Enhance Osseointegration: An In Vivo Study. Materials. 2022; Aug 29; 15(17): 5962. doi:10.3390/ma15175962
101.    Fu PP, Xia Q, Hwang HM, et al. Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis. 2014 Mar;22(1):64-75. doi:10.1016/j.jfda.2014.01.005
102.    Tran TK, Nguyen MK, Lin C, et al. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. Science of The Total Environment. 2024; Feb 20; 912: 169331. doi:10.1016/j.scitotenv.2023.169331
103.    Li M, Yang Y. Nanoscale TiO2 nanotubes as a basis for governing cell behaviors and application challenges. International Journal of Nanomedicine. 2017 Jan 13;12:575-6. doi:10.2147/IJN.S128749
104.    Hasanah EU, Kustiningsih I, Slamet S,et al. Recent Development and Application of TiO2 Nanotubes Photocatalytic Activity for Degradation Synthetic Dyes – A Review. Jurnal Rekayasa Kimia and Lingkungan. 2021; 16(2): 52-67. doi:10.23955/rkl.v16i2.20739
105.    Batool SA, Salman Maqbool M, Javed MA, Niaz A, Rehman MAU. A Review on the Fabrication and Characterization of Titania Nanotubes Obtained via Electrochemical Anodization. Surfaces. 2022; Nov 9; 5(4): 456-480. doi:10.3390/surfaces5040033
106.    Dar GI, Saeed M, Wu A. Toxicity of TIO 2 Nanoparticles. In: Wu A, Ren W, eds. TiO2 Nanoparticles. 1st ed. Wiley; 2020: 67-103. 
107.    EFSA Scientific Committee, More S, Bampidis V, et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFS2. 2021;19(8). 
108.    Working Safely with Nanomaterials. OSHA.Available at: https://www.osha.gov/sites/default/files/publications/OSHA_FS-3634.pdf.
109.    Demirbaş AK, Çevik S. Regulatory Policies for Safety of Nanomaterials. 2020.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available