Author(s):
Gopal Thakur, Pallavi Bassi, Kritika Garg, Neha Kumari
Email(s):
pallavibassi1@gmail.com
DOI:
10.52711/0974-360X.2025.00490
Address:
Gopal Thakur1,2, Pallavi Bassi2*, Kritika Garg1, Neha Kumari3
1CT Institute of Pharmaceutical Sciences, CT Group of Institutions, Shahpur, Jalandhar, 144001, Punjab, India.
2Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
3Institution of Pharma Sciences, Chandigarh University, Punjab, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 7,
Year - 2025
ABSTRACT:
For years, oral administration of drug has been prioritized because of its ease and patient compliance. However, there are some drawbacks which comes with this delivery system out of which the main concern is first pass metabolism which affect the bioavailability of drugs. So, to improve the bioavailability and avoid first pass metabolism intravenous (IV) delivery would be the best option but it is often painful and can’t be used by patient by their own. Transdermal drug delivery systems (TDDS) may overcome these issues by giving the drug via skin but it is challenging because of the startum corneum. Hence to shortout all these issues some investigations are being carried out by the researchers which include vesicle delivery, iontophoresis, electroporation, sonophoresis, and microneedle methods. The ability of these methods to overcome all these problems have been concluded by the various studies. To make them more effective in future some advancements such as lipid polymer hybrid nanoparticles, targeted vesicles (by adhering ligands on vesicle surfaces), microneedles with sensors which regulate the drug flow and also dissolvable microneedles or alter in electrical and ultrasound parameters to minimize the tissue damage, may further enhance their effectiveness.
Cite this article:
Gopal Thakur, Pallavi Bassi, Kritika Garg, Neha Kumari. Transdermal Drug Delivery System: Current Progress and Prospects for the Future An Overview. Research Journal of Pharmacy and Technology. 2025;18(7):3396-3. doi: 10.52711/0974-360X.2025.00490
Cite(Electronic):
Gopal Thakur, Pallavi Bassi, Kritika Garg, Neha Kumari. Transdermal Drug Delivery System: Current Progress and Prospects for the Future An Overview. Research Journal of Pharmacy and Technology. 2025;18(7):3396-3. doi: 10.52711/0974-360X.2025.00490 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-7-70
8. REFERENCE:
1. Sindhu RK. Chitkara M. Kaur G. Jaiswal P. Kalra A. Singh I. Sriamornsak P. Skin Penetration Enhancer’s in Transdermal Drug Delivery Systems. Research J. Pharm. and Tech. 2017; 10(6): 1809-1815. doi: 10.5958/0974-360X.2017.00319.5
2. Raj GM. Raveendran R. Introduction to basics of pharmacology and toxicology. In General and Molecular Pharmacology: Principles of Drug Action 2019; 1-17, Springer Nature Singapore Pte Ltd Publishing. https://doi.org/10.1007/978-981-32-9779-1
3. Marschütz MK. Bernkop-Schnürch A. Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials. 2000; 21:1499-507. https://doi.org/10.1016/s0142-9612(00)00039-9
4. Patel A. Cholkar K. Mitra AK. Recent developments in protein and peptide parenteral delivery approaches. Ther Deliv. 2014;5:337–65. https://doi.org/10.4155/tde.14.5
5. Jayaprakash R. Hameed J. Anupriya. An overview of Transdermal delivery system. Asian Journal of Pharmaceutical and Clinical Research. 2017; 10(10): 36-40. DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10i10.19909
6. Ali S. Shabbir M. Shahid N. The Structure of Skin and Transdermal Drug Delivery System- A Review. Research J. Pharm. and Tech. 2015; 8(2):103-109. https://doi.org/10.5958/0974-360X.2015.00019.0
7. Gaikwad SS. Zanje AL. Somwanshi JD. Advancements in transdermal drug delivery: A comprehensive review of physical penetration enhancement techniques. International Journal of Pharmaceutics. 2024; 652:123856. https://doi.org/10.1016/j.ijpharm.2024.123856
8. Kushwaha A. Jaiswal J. Singh P. Rathore N. Dhruw JP. et al. An exhaustive review based on the formulation and evaluation methods behind the development of transdermal drug delivery systems. Research J. Pharm. and Tech. 2017; 10(5): 1531-1538. doi: 10.5958/0974-360X.2017.00270.0
9. Ghaferi M. Alavi SE. Phan K. Maibach H. Mohammed Y. Transdermal Drug Delivery Systems (TDDS): Recent Advances and Failure Modes. Molecular Pharmaceutics. 2024; 21(11): 5373-5391. doi: 10.1021/acs.molpharmaceut.4c00211.
10. Swarnalatha MK. Saikiran HC. Mounika B. Swetha B. Ramarao T. A Comprehensive Review on Role of Polymers in Transdermal Drug Delivery System. 2023;3(10): 568-574. https://doi.org/10.47191/ijpbms/v3-i10-11
11. Pichayakorna W. Suksaereea J. Boonmea P. Amnuaikita T. Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: Effect of polymer and plasticizer blends. Journal of Membrane Science. 2012;411-412:81-90. http://dx.doi.org/10.1016/j.memsci.2012.04.017
12. Rajalakshmi P. Halith SM. Salam SM. Monisha P. Muhilaras S. Murugan D. Nandhakumar K. Review on Transdermal Drug Delivery System. International Journal of Pharmaceutical Sciences Review and Research. 2023; 83(2): 49-57. DOI: 10.47583/ijpsrr.2023.v83i02.008
13. Kumar A. Behl T. Chadha S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol. 2020;149:1262-1274. https://doi.org/10.1016/j.ijbiomac.2020.02.048
14. Das S. Sarkar P. Majee BS. Polymers in Matrix Type Transdermal Patch-International Journal of Pharmceutical Sciences. 2022; 73(1):77-86. http://dx.doi.org/10.47583/ijpsrr.2022.v73i01.014
15. Swarnalatha KM. Saikiran CH. Mounika B. Swetha B. Ramarao T. A Comprehensive Review on Role of Polymers in Transdermal Drug Delivery System. International Journal Of Pharmaceutical And Bio-Medical Science. 2023; 3(10): 568–574. https://doi.org/10.47191/ijpbms/v3-i10-11
16. Sohi H. Ahuja A. Ahmad FJ. Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev. Ind. Pharm. 2010;36 (3): 254–282. https://doi.org/10.1080/03639040903117348
17. Madhav NVS. Shakya AK. Shakya P. Singh K. Orotransmucosal drug delivery systems: a review. Journal of controlled Release. 2009; 140 (1): 2-11. https://doi.org/10.1016/j.jconrel.2009.07.016
18. Nagdev SA. Agrawal O. Usman M. Transdermal Drug Delivery System: An Overview. Research Journal of Pharmacy and Technology. 2022; 15(3): 1371-7. doi: 10.52711/0974-360X.2022.00229.
19. Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001; 14: 101–14. https://doi.org/10.1016/s0928-0987(01)00167-1
20. N’Da DD. Prodrug strategies for enhancing the percutaneous absorption of drugs. Molecules. 2014; 19: 20780–807. https://doi.org/10.3390/molecules191220780
21. Singh R. Upadhayay A. Kale KM. Effect of Liposomes as a carrier on Pharmacokinetics of Cisplatin. Research J. Pharm. and Tech. 2018; 11(11): 5073-5077. https://doi.org/10.5958/0974-360X.2018.00925.3
22. Chopra H. Dey PS. Das D et al Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules. 2021; 26(16): 4998. https://doi.org/10.3390/molecules26164998
23. Lukawski M. Dałek P. Borowik T. Foryś A. Langner M. Witkiewicz W. Przybyło M. New oral liposomal vitamin C formulation: properties and bioavailability. Journal of Liposome Research. 2020; 30(3): 227-234. https://doi.org/10.1080/08982104.2019.1630642
24. De Almeida ACP. Pinto LMA. Alves GP et al Liposomal-based lidocaine formulation for the improvement of infiltrative buccal anaesthesia. J Liposome Res. 2019; 29(1): 66-72. https://doi.org/10.1080/08982104.2018.1483947
25. Uhl P. Helm F. Hofhaus G. Brings S. Kaufman C. Leotta K. Urban S. Haberkorn U. Mier W. Fricker G. A liposomal formulation for the oral application of the investigational hepatitis B drug Myrcludex B. European journal of pharmaceutics and biopharmaceutics. 2016; 103: 159–166. https://doi.org/10.1016/j.ejpb.2016.03.031
26. Sankhyan A. Pawar PK. Metformin loaded non-ionic surfactant vesicles: optimization of formulation, effect of process variables and characterization. Daru. 2013; 21(1): 7. https://doi.org/10.1186/2008-2231-21-7
27. Rao NN. Babu PS. Chowdary AD. Divya Y. Laksmi TS. K. Latha KS. Sirisha P. Niosomes: A Vesicular Drug Delivery System. Research J. Pharm. and Tech. 2018; 11(8): 3731-3736. https://doi.org/10.5958/0974-360X.2018.00684.4
28. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014; 185: 22–36. https://doi.org/10.1016/j.jconrel.2014.04.015
29. Zhang Y. Zhang K. Wu Z. Guo T. Ye B. Lu M. Zhao J. Zhu C. Feng N. Evaluation of transdermal salidroside delivery using niosomes via in vitro cellular uptake. International journal of pharmaceutics. 2015; 478(1): 138-146. https://doi.org/10.1016/j.ijpharm.2014.11.018
30. Hasan AA. Madkor H. Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug delivery. 2013; 20(3-4): 120–126. https://doi.org/10.3109/10717544.2013.779332
31. Barani M. Mirzaei M. Mahani MT. Nejad AL. Nematollahi MH. A new formulation of hydrophobin-coated `niosome as a drug carrier to cancer cells. Materials science and engineering. C, Materials for biological applications. 2020; 113: 110975. https://doi.org/10.1016/j.msec.2020.110975
32. Stanekzai A. Sudhakar CK. Zhakfar AM. Vikrant. Singh K. Recent Approaches in Transdermal Drug Delivery System. Research J. Pharm. and Tech. 2019; 12(9): 4550-4558. doi:10.5958/0974-360X.2019.00783.2
33. Marwah H. Garg T. Rath G. Goyal KA . Development of transferosomal gel for trans-dermal delivery of insulin using iodine complex. Drug Delivery. 2016; 23(5): 1636-1644. https://doi.org/10.3109/10717544.2016.1155243
34. Lei W. YU C. Lin H. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian Journal Of Pharmaceutical sciences. 2013; 8(6): 336-345. https://doi.org/10.1016/j.ajps.2013.09.005
35. Omar MM. Hasan AO. Sisi EMA. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: a promising approach for enhancement of skin permeation. International Journal of Nanomedicine. 2019; 14: 1551-1562. https://doi.org/10.2147/IJN.S201356
36. Moghal. Shabreen R. Sangeetha S. Ethosomes: A Novel Drug Delivery System And Their Therapeutic Applications -A Review. Research J. Pharm. and Tech. 2020; 13(4): 1970-1978. doi:10.5958/0974-360X.2020.00355.8
37. Sakdiset P. Amnuaikit T. Formulation development of ethosomes containing indomethacin for transdermal delivery. Journal of Drug Delivery Science and Technology. 2019; 52:760-768. http://dx.doi.org/10.1016/j.jddst.2019.05.048
38. Mousa IA. Hammady TM. Gad S. Zaitone SA. El-Sherbiny M. Sayed OM. Formulation and Characterization of Metformin-Loaded Ethosomes for Topical Application to Experimentally Induced Skin Cancer in Mice. Pharmaceuticals. 2022; 15(6): 657. https://doi.org/10.3390/ph15060657
39. Barupal AK. Gupta V. Ramteke S. Preparation and Characterization of Ethosomes for Topical delivery of Aceclofenac. Indian J Pharm Sci. 2010; 72(5): 582-6. https://doi.org/10.4103/0250-474x.78524
40. Jaitak D. Nacchammai K. Pavithra K. Keerthi G. Nair S. Kumar S. Polymeric Nanoparticles for Anti-Cancer Treatment- A Review of its Mechanisms. Research J. Pharm. and Tech. 2021; 14(3): 1747-1754. doi: 10.5958/0974-360X.2021.00311.5
41. Li S. Chen L. Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology. 2023; 21: 232. https://doi.org/10.1186/s12951-023-01992-2
42. Schaffazick SR. Pohlmann AR. Dalla-Costa T. Guterres S.l.S. Freeze-drying polymeric colloidal suspensions: Nanocapsules, nanospheres and nanodispersion: A comparative study. Eur. J. Pharm. Biopharm. 2003; 56: 501-505. https://doi.org/10.1016/s0939-6411(03)00139-5
43. Owens DE. Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006;307:93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010
44. Rawat S. Vengurlekar S. Rakesh B. Jain S. Srikarti G. Transdermal delivery by iontophoresis. Indian J Pharm Sci. 2008; 70(1): 5-10. https://doi.org/10.4103/0250-474x.40324
45. Nivetha B. Rahmathunisha A. Lokeshwari K. Kumaresan A. Nikkitha S. Yeseshivi L. Janani R. Efficacy of Nanocurcumin with application of Iontophoresis on Inflammatory arthritis patients. Research Journal of Pharmacy and Technology. 2022; 15(2): 825-9. doi:10.52711/0974-360X.2022.00137
46. Jiang C. Jiang X. Wang X. Shen J. Zhang M. Jiang, L. Ma R. Gan T. Gong Y. Ye J. Gao W. Transdermal iontophoresis delivery system for terazosin hydrochloride: an in vitro and in vivo study. Drug delivery. 2021; 28(1): 454–462. https://doi.org/10.1080/10717544.2021.1889719
47. Charoo NA. Rahman Z. Repka MA. Murthy SN. Electroporation: an avenue for transdermal drug delivery. Current drug delivery. 2010; 7(2): 125–136. https://doi.org/10.2174/156720110791011765
48. Chen X. Zhu L. Li R. Pang L. Zhu S. Ma J. Electroporation-enhanced transdermal drug delivery: Effects of logP, pKa, solubility and penetration time. European Journal of Pharmaceutical Sciences. 2015; 151: 928-0987. https://doi.org/10.1016/j.ejps.2020.105410
49. Huang B. Dong WJ. Yang GY. Wang W. Ji CH. Zhou FN. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug design, development and therapy. 2015; 9: 3867–3876. https://doi.org/10.2147/dddt.s75702
50. Waghule T. Singhvi G. Kumar SD. Pandey MM. Gupta G. Singh M. Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomedicine and Pharmacotherapy. 2019; 109: 1249-1258. https://doi.org/10.1016/j.biopha.2018.10.078
51. Rajendran K. Pahal S. Badnikar K. Methotrexate delivering microneedle patches for improved therapeutic efficacy in treatment of rheumatoid arthritis. International Journal Of Pharmaceutics. 2023; 642: 123184. https://doi.org/10.1016/j.ijpharm.2023.123184