Author(s): Sadia Afrin, Rezwan Ahmed Mahedi, Mustafa Jawad Kadham, Mohammad Chand Jamali, Swapnil Das, Hrishik Iqbal, Raed Fanoukh Aboqader Al-Aouadi, Djumaniyazova Mukhayya Xusinovna, Abdul Kareem J. Al-Azzawi, Nikolaus Syrmos, Akayed Hasan, Mustafa Mudhafar

Email(s): pcafrin7@gmail.com , mjamali68@gmail.com

DOI: 10.52711/0974-360X.2025.00510   

Address: Sadia Afrin1*, Rezwan Ahmed Mahedi1,2, Mustafa Jawad Kadham3, Mohammad Chand Jamali4, Swapnil Das5, Hrishik Iqbal6, Raed Fanoukh Aboqader Al-Aouadi7, Djumaniyazova Mukhayya Xusinovna8, Abdul Kareem J. Al-Azzawi9, Nikolaus Syrmos10, Akayed Hasan11, Mustafa Mudhafar12
1Department of Pharmacy, Comilla University, Comilla, Bangladesh.
1,2Chief Researcher, Benzene Research Center, Dhaka, Bangladesh.
3College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq.
4*Assistant Professor, Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates.
5Department of Pharmacy, University of Science and Technology Chittagong.
6Department of Mathematics and Natural Sciences, Brac University, Bangladesh.
7College of Medicine, Al-Ayen Iraqi University, Thi-Qar, Iraq.
8Pedagogy and Psychology Department, Urgench State University, Uzbekistan.
9Dentistry Department, Al-Turath University, Baghdad, Iraq.
10Aristotle University of Thessaloniki, The

Published In:   Volume - 18,      Issue - 8,     Year - 2025


ABSTRACT:
Introduction. Zosurabalpin (ZAB) is a new antibiotic that shows significant promise against drug-resistant bacteria, specifically Acinetobacter baumannii, a pathogen notorious for its resistance to many existing antibiotics. It works by blocking the lipid transport mechanism within the bacteria, which is crucial for their survival. Objective. This study aims to systematically analyze the mechanism of action of Zosurabalpin and to perform computational analysis to identify target selection and binding sites of cancerous and pathogenic microbial proteins. Method. A comprehensive literature review was conducted using PubMed, Google Scholar, and Cochrane Library databases to understand the mechanism of Zosurabalpin against A. baumannii. Computational molecular screening tools such as Swiss ADME, Swiss Target Prediction, Swiss Param, Mcule, PASS Online, and others were utilized to analyze the effectiveness of Zosurabalpin, determine its binding sites, and evaluate its pharmacokinetic and toxicological properties. Result. Zosurabalpin targets the lipopolysaccharide (LPS) transport machinery in A. baumannii, inhibiting LPS transport and destabilizing the bacterial outer membrane. Computational analysis indicated that Zosurabalpin could be useful in cancer treatment, showing potential activity as a fibroblast growth factor agonist and interleukin-2 agonist, among others. The compound demonstrated a balanced profile in terms of physicochemical properties, pharmacokinetics, and safety, though improvements in absorption might be needed. Discussion. The novel mechanism of action of Zosurabalpin, involving the inhibition of LPS transport in A. baumannii, highlights its potential to address the urgent need for effective treatments against drug-resistant infections. Computational predictions also suggest its potential application in cancer therapy, with favorable pharmacokinetic and safety profiles. However, challenges remain in optimizing its absorption properties for clinical use.


Cite this article:
Sadia Afrin, Rezwan Ahmed Mahedi, Mustafa Jawad Kadham, Mohammad Chand Jamali, Swapnil Das, Hrishik Iqbal, Raed Fanoukh Aboqader Al-Aouadi, Djumaniyazova Mukhayya Xusinovna, Abdul Kareem J. Al-Azzawi, Nikolaus Syrmos, Akayed Hasan, Mustafa Mudhafar. Computational and Systematic Analysis of Zosurabalpin (RG6006) against Cancerous and Pathogenic Microbial Proteins. Research Journal Pharmacy and Technology. 2025;18(8):3541-8. doi: 10.52711/0974-360X.2025.00510

Cite(Electronic):
Sadia Afrin, Rezwan Ahmed Mahedi, Mustafa Jawad Kadham, Mohammad Chand Jamali, Swapnil Das, Hrishik Iqbal, Raed Fanoukh Aboqader Al-Aouadi, Djumaniyazova Mukhayya Xusinovna, Abdul Kareem J. Al-Azzawi, Nikolaus Syrmos, Akayed Hasan, Mustafa Mudhafar. Computational and Systematic Analysis of Zosurabalpin (RG6006) against Cancerous and Pathogenic Microbial Proteins. Research Journal Pharmacy and Technology. 2025;18(8):3541-8. doi: 10.52711/0974-360X.2025.00510   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-13


REFERENCE:
1.    Hawser S, Kothari N, Valmont T, Louvel S, Zampaloni C. 2131. Activity of the Novel Antibiotic Zosurabalpin (RG6006) against Clinical Acinetobacter Isolates from China. Open Forum Infect Dis. 2023; Nov 27; 10(Suppl 2): ofad500.1754. https://doi.org/10.1093/ofid/ofad500.1754. 
2.    Rabeea AAH, Jarallah EM. Detection of AmpC gene and Some OXA β-lactamase class among Carbapenem Resistant Acinetobacter baumannii (CRAB) isolates in Hilla, Iraq. Research J. Pharm. and Tech. 2018; 11(2): 777-784. https://doi.org/10.5958/0974-360X.2018.00147.6 
3.    Guenther A, Millar L, Messer A, Giraudon M, Patel K, Deurloo EJ, Lobritz M, Gloge A. 2126. Safety, Tolerability, and Pharmacokinetics (PK) in Healthy Participants Following Single Dose Administration of Zosurabalpin, a Novel Pathogen-Specific Antibiotic for the Treatment of Serious Acinetobacter Infections. Open Forum Infect Dis. 2023 Nov 27;10(Suppl 2):ofad500.1749. https://doi.org/10.1093/ofid/ofad500.1749.  
4.    Centers for Disease Control and Prevention. 2019 AR Threats Report. CDC. 2019. https://www.cdc.gov/DrugResistance/Biggest-Threats.html (2019).
5.    Roope, L. S. J. et al. The challenge of antimicrobial resistance: what economics can contribute. Science 364, eaau4679 (2019).
6.    AL-Harmoosh RA, Jarallah EM, AL-Shamari AM, AL-Khafaji HM. Detection of Efflux Pumps Genes in Clinical Isolates of Acinetobacter baumannii . Research J. Pharm. and Tech. 2017; 10(12): 4231-4236. https://doi.org/10.5958/0974-360X.2017.00775.2 
7.    Homenta H, Julyadharma, Saharman YR, Kuntaman K, Susianti H, Santosaningsih D, Noorhamdani. Molecular characterization of Clinical carbapenem-resistant Acinetobacter baumannii isolates from two tertiary care hospitals in Indonesia. Research Journal of Pharmacy and Technology. 2022; 15(7): 2917-2. https://doi.org/10.52711/0974-360X.2022.00486 
8.    Aboqader RF, Jassim SM, Al-Hasnawy MH. Increase il-17 α and reduced ifn-γ/il-4 ratio are novel responsible factors for persistence of entamoeba histolytica infection. Biochemical and Cellular Archives, 2019, 19(2), 3883.
9.    Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).
10.    Peleg, AY, Seifert H. and Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582 (2008).
11.    Bhavani G., Gopinath P. Detection of Biofilm among Clinical isolates of Acinetobacter baumannii by Tissue Culture Plate Method (TCP). Research J. Pharm. and Tech 2016; 9(10): 1635-1637. https://doi.org/10.5958/0974-360X.2016.00327.9 
12.    Nasr P. Genetics, epidemiology and clinical manifestations of multidrug-resistant Acinetobacter baumannii. J. Hosp. Infect. 104, 4–11 (2019).
13.    Higgins PG, Dammhayn C, Hackel M and Seifert H. Global spread of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 65, 233–238 (2010).
14.    Nowak J. et al. High incidence of pandrug-resistant Acinetobacter baumannii isolates collected from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J. Antimicrob. Chemother. 72, 3277–3282 (2017).
15.    Al-Aouadi RF, Jassim S, Al-Aouadi RF. Study of Immunological Response to Early and Late Stages of Hydatid Cyst Formation. Journal of Babylon University. 2016, 24(5): 1433-1446. 
16.    Kareem MH, Hasan AY. Inhibition of Biofilm formation of Imipenem-resistant Acinetobacter baumannii using Curcuma longa extracts, silver nanoparticles and Azithromycin. Research J. Pharm. and Tech. 2019; 12(9): 4463-4470. https://doi.org/10.5958/0974-360X.2019.00769.8 
17.    Food and Drug Administration. FDA approves new treatment for pneumonia caused by certain difficult-to-treat bacteria. FDA. 2023. https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-pneumonia-caused-certain-difficult-treat-bacteria (2023).
18.    Mahedi M.R.A. et al. Cefiderocol (CFDC): A Spy Antibiotic Future Replacement of Carbapenem. Research Journal of Pharmacy and Technology. 2023; 16(11): 5492-6. https://doi.org/10.52711/0974-360X.2023.00888 
19.    Nabilah N. et al. Examining the Interplay of Psychological Factors in Chronic Skin Disease: A Review on Depression, Anxiety, and Stress. Research Journal of Pharmacy and Technology. 2024; 17(4): 1902-8. https://doi.org/10.52711/0974-360X.2024.00302 
20.    Shields RK, Paterson DL and Tamma PD. Navigating available treatment options for carbapenem-resistant Acinetobacter baumannii–calcoaceticus complex infections. Clin. Infect. Dis. 76, S179–S193 (2023).
21.    Afrin S., et al. Eltrombopag Olamine in Dengue Fever: Systematic Review of Clinical Trials and Beyond. Research Journal of Pharmacy and Technology. 2024; 17(6): 2778-2. https://doi.org/10.52711/0974-360X.2024.00436 
22.    Piperaki ET, Tzouvelekis LS, Miriagou V. and Daikos GL. Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. Clin. Microbiol. Infect. 25, 951–957 (2019).
23.    Tamma PD. et al. Infectious Diseases Society of America Guidance on the treatment of AmpC β-lactamase-producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin. Infect. Dis. 74, 2089–2114 (2021).
24.    Paul M. et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by ESICM –European Society of intensive care Medicine). Clin. Microbiol. Infect. 28, 521–547 (2021).
25.    Paul M. et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect. Dis. 18, 391–400 (2018).
26.    Chusri S. et al. Clinical characteristics and outcomes of community and hospital-acquired Acinetobacter baumannii bacteremia. J. Microbiol. Immunol. Infect. 52, 796–806 (2019).
27.    Du X. et al. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: a systematic review and meta-analysis. Am. J. Infect. Control. 47, 1140–1145 (2019).
28.    Schooley RT. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954-17 (2017).
29.    Mahedi M.R.A. et al. Understanding the Global Transmission and Demographic Distribution of Nipah Virus (NiV). Research Journal of Pharmacy and Technology 2023; 16(8): 3588-4. https://doi.org/10.52711/0974-360X.2023.00592 
30.    Uyttebroek S. et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect. Dis. 22, e208–e220 (2022)
31.    Zoete, V., Daina, A., Bovigny, C., and Michielin, O. SwissSimilarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening., J. Chem. Inf. Model., 2016; 56(8): 1399-1404.
32.    Bugnon M, Goullieux M, Röhrig UF, Perez MAS, Daina A, Michielin O, Zoete V. SwissParam 2023: a modern web-based tool for efficient small molecule parameterization. J. Chem. Inf. Model., 2023; 63(21): 6469-75.
33.    Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem., 2011; 32(11): 2359-68.
34.    Yesselman JD, Price DJ, Knight JL, Brooks CL 3rd. MATCH: An atom-typing toolset for molecular mechanics force fields.J. Comput. Chem., 2011; 33(2): 189-202.
35.    Hussein MJ, Mohammed Al-Alwany SH. Molecular Highlighting Analysis of Mutational CDK41, CDK6 and P27 in association with Human Mammary Tumor Virus Infection in Tissues from Iraqi Female with Ovarian Tumors. Research J. Pharm. and Tech 2018; 11(10): 4699-4706. https://doi.org/10.5958/0974-360X.2018.00858.2 
36.    Pai A, Jayashree BS. Computational Approach for the Design of Flavone based CDK2/CyclinA Inhibitors: A Simulation Study Employing Pharmacophore based 3D QSAR. Research J. Pharm. and Tech. 2019; 12(5): 2299-2303. https://doi.org/10.5958/0974-360X.2019.00383.4

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available