Author(s): Sani N. Fitriansyah, Nisa Saonah, Umi Baroroh, Irma E. Herawati, Muhammad Ikhlas

Email(s): saninurlaela@stfi.ac.id

DOI: 10.52711/0974-360X.2025.00512   

Address: Sani N. Fitriansyah1*, Nisa Saonah1, Umi Baroroh2, Irma E. Herawati1, Muhammad Ikhlas3
1Department of Pharmaceutical Biology, Indonesian School of Pharmacy (Sekolah Tinggi Farmasi Indonesia), Soekarno Hatta No.354, Bandung 40256, West Java, Indonesia.
2Department of Biotechnology, Indonesia School of Pharmacy (Sekolah Tinggi Farmasi Indonesia), Soekarno Hatta No.354, Bandung 40256, West Java, Indonesia.
3Department of Pharmacy, Universitas Islam Negeri Alaudin, Sultan Alauddin No. 63, Makassar, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 8,     Year - 2025


ABSTRACT:
Cascara is a very abundant by-product of coffee. Coffee cascara contains antioxidant compounds. Antioxidant compounds can protect the skin from sun exposure and free radicals which can cause increased melanin production resulting in hyperpigmentation. Although there has been no specific research on antihyperpigmentation cascara extract from Robusta coffea, several studies have shown that antioxidant compounds and inhibitor tyrosinase can help reduce hyperpigmentation on the skin. The current study investigates the antioxidant capacities of cascara from Robusta coffea, its phytochemical profile, caffeine content, and examines the potential interaction of caffeine with the tyrosinase in human skin using an insilico approach. Methods: The extraction process was carried out using the Soxhlet method with a sequential increase in solvents (n-hexane, ethyl acetate, and ethanol). The extract obtained was evaluated for antioxidant activity by DPPH and CUPRAC methods, preliminary phytochemical screening, and total phenolic content (TPC). Caffeine content was measured by HPLC. The potential of caffeine in the inhibition of tyrosinase enzyme was evaluated by molecular docking with kojic acid as the standard of inhibitor tyrosinase. Result: Based on the Antioxidant Activity Index (AAI) DPPH and CUPRAC, cascara extract from Robusta coffea had moderate to strong antioxidant categories. Phytochemical screening of n-hexane extract revealed the presence of alkaloids, quinones, and steroid/triterpenoids while in ethanol and ethyl acetate extract revealed the presence of alkaloid, phenol group, flavonoid, quinones, and steroid/triterpenoid. TPC in cascara extract from Robusta was 2.334 to 10.44 g GAE/100 g extract. Caffeine content by HPLC in ethanol extract was 0.6613% ± 0.007. The interaction of kojic acid and caffeine with tyrosinase enzyme was -5.7 and -5.8 kcal/mol. Conclusion: Ethanol cascara extract from Robusta coffea has more potential for anti-hyperpigmentation through the inhibition of free radicals by antioxidant compounds and the inhibition of tyrosinase. This is worthy of further investigation in the future.


Cite this article:
Sani N. Fitriansyah, Nisa Saonah, Umi Baroroh, Irma E. Herawati, Muhammad Ikhlas. Antioxidant Activity and Caffeine content of Cascara from Coffea canephora Var. Robusta in Pangandaran West Java: A Study for Potential of Antihyperpigmentation. Research Journal Pharmacy and Technology. 2025;18(8):3557-4. doi: 10.52711/0974-360X.2025.00512

Cite(Electronic):
Sani N. Fitriansyah, Nisa Saonah, Umi Baroroh, Irma E. Herawati, Muhammad Ikhlas. Antioxidant Activity and Caffeine content of Cascara from Coffea canephora Var. Robusta in Pangandaran West Java: A Study for Potential of Antihyperpigmentation. Research Journal Pharmacy and Technology. 2025;18(8):3557-4. doi: 10.52711/0974-360X.2025.00512   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-15


REFERENCES: 
1.    Fitriansyah, SN. Hartati R. Fidrianny I. Effect of different solvent on phytochemical content, tyrosinase inhibition and antioxidant activities of campolay (Pouteria campechiana kunth. [Baehni.]). Open Access Macedonian Journal Medicine Sciences. 2022; 10(A): 158-163. doi.org/10.3889/oamjms.2022.8204
2.    Rathee P. Kumar S. Kumar D. Kumari B. Yadav SS. Skin hyperpigmentation and its treatment with herbs: an alternative method. Future Journal of Pharmaceutical Sciences. 2021; 7(1): 1-14. doi.org/10.1186/s43094-021-00284-6
3.    Pillaiyar T. Namasivayam V. Manickam M. Jung SH. Inhibitors of melanogenesis: An updated review. Journal of Medicinal Chemistry. 2018; 61(17): 7395–7418. doi.org/10.1021/acs.jmedchem.7b00967
4.    Elfiah U. Perdanakusuma DS. Saputro ID. Misnawi. Robusta BP-42 coffee bean extract is a new anti-tyrosinase candidate to reduce melanogenesis activity. Bali Medical Journal. 2022; 11(3): 2022–2026. doi.org/ 10.15562/bmj.v11i3.3922
5.    Supanivatin P. Thipayarat A. Siriwattanayotin S. Ekkaphan P. Deepatana A. Wongwiwat J. A comparative analysis of phenolic content, antioxidant activity, antimicrobial activity, and chemical profile of coffea robusta extracts using subcritical fluid extraction and supercritical carbon dioxide extraction. Foods. 2023; 12(18): 1-17. doi.org/10.3390/foods12183443
6.    Lestari W. Hasballah K. Listiawan MY. Sofia S. Identification of antioxidant components of gayo arabica coffee cascara using the gc-ms method. IOP Conference Series: Earth and Environmental Science. 2022; 956: 1-8. doi.org/ 10.1088/1755-1315/956/1/012011
7.    Iriondo-Dehond A. Iriondo-Dehond M. Del Castillo MD. Applications of compounds from coffee processing by-products. Biomolecules. 2020; 10:1–20. doi.org/10.3390/biom10091219 
8.    Rodrigues R. Oliveira MB. Alves R. Chlorogenic acids and caffeine from coffee by-products: a review on skincare applications. Cosmetics. 2023; 10(1): 1-15. doi.org/10.3390/cosmetics10010012
9.    Utami NF. Elya B. Hayun. Kusmardi. Measurement of quality non-specific and specific-parameters of 70% ethanol extract and simplicia from cascara coffee robusta (Coffea canephora L.) and its potency as antioxidant. IOP Conference Series: Earth and Environmental Science. 2022; 1116:1-7. doi.org/10.1088/1755-1315/1116/1/012008
10.    Tan L. Mogana R. Chinnappan S. Venkatalakshmi R. Yap VL. Various plants and bioactive constituents for pigmentation control:a review. Research Journal of Pharmacy and Technology. 2021; 14(11): 6106–6108. doi.org/10.52711/0974-360X.2021.01061 
11.    Setyawan IE. Setyowati PE. Rohman A. Nugroho KA. Simultaneous determination of epigallocatechin gallate, catechin, and caffeine from green tea leaves (Camellia sinensis L) Extract by RP-HPLC. Research Journal of Pharmacy and Technology. 2021; 13(3): 1489–1494. 
12.    Anupam R. Biswajit D. Effects of caffeine on health: a review. Research Journal of Pharmacy and Technology. 2015; 8(9): 1312–1319. doi.org/10.5958/0974-360X.2015.00237.1
13.    Komaria N. Suratno. Sudarti. Dafik. The effect of fermentation on acidity, caffeine and taste cascara robusta coffee. Journal of Physics: Conference Series. 202; 1751: 1-9. doi.org/10.1088/1742-6596/1751/1/012062
14.    Eun Lee K. Bharadwaj S. Yadava U. Gu Kang S. Evaluation of caffeine as inhibitor against collagenase, elastase and tyrosinase using in silico and in vitro approach. Journal of Enzyme Inhibition and Medicinal Chemistry. 2019; 34(1): 927–936. doi.org/ 10.1080/14756366.2019.1596904
15.    Fitriansyah SN. Yollanda T. Riasari H. Total carotenoid content and antioxidant activity of sawo walanda (Pouteria campechiana Kunth. Baehni) extract from various solvents. Tropical Journal of Natural Product Research. 2023; 7(7): 3478-3481. doi.org/10.26538/tjnpr/v7i7.28
16.    Apak R Guclu K. Demirata B. Ozyurek M. Celik S. Bektasoglu B. Berker K. Ozyurt D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC Assay. Molecules. 2007; 12: 1496–1547. www.mdpi.org/molecules
17.    Hartati R. Febiana NA. Pramastya H. Fidrianny I. Antioxidant activities of stem, leaves and fruits extracts of pepino (Solanum muricatum Aiton). Pakistan Journal of Biological Sciences. 2024; 27(2): 69-79. doi.org/ 10.3923/pjbs.2024.69.79
18.    Scherer R. Godoy HT. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chemistry. 2009; 112(3): 654–658. doi.org/ 10.1016/j.foodchem.2008.06.026
19.    Pourmorad F. Hosseinimehr SJ. Shahabimajd N. Antioxidant activity , phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology. 2006; 5(6): 1142–1145. doi.org/10.1055/s-2007-987042
20.    El-Nabarawi AM. Teaima HM. Hamid AM. Shoman AN. Mohamed IA. El Sahar A. Formulation, evaluation and antioxidant activity of caffeine fast melt tablets. Research Journal of Pharmacy and Technology. 2018; 11(17): 1331–3138. doi.org/ 10.5958/0974-360X.2018.00575.9
21.    Sudhakar B. Srivalli P. Sri SR. Reverse phase high performance liquid chromatography method for simultaneous estimation of aspirin and caffeine in pure and tablet. Asian Journal of Pharmaceutical Research. 2023; 13(2): 81–86
22.    Thu Anh N. Quantification of acetaminophen, caffeine and ibuprofen in solid dosage forms by uv spectroscopy coupled with multivariate analysis. Asian Journal of Pharmaceutical Analysis. 2021; 11(2): 127–129. doi.org/10.52711/2231-5675.2021.00022
23.    Chowdhury RS. Maleque M. Shihan HM. Development and validation of a simple rp-hplc method for determination of caffeine in pharmaceutical dosage forms. Asian Journal of Pharmaceutical Analysis. 2012; 2(1): 01–04. 
24.    Kumari A. Kumar R. Sulabh G. Singh P. Kumar J. Singh VK. Ojha KK. In silico ADMET, molecular docking and molecular simulation-based study of glabridin’s natural and semisynthetic derivatives as potential tyrosinase inhibitors. Advances in Traditional Medicine. 2023; 23(3); 733–751. doi.org/ 10.1007/s13596-022-00640-8.
25.    Webb B. Sali A. Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatic. 2016; 5(6): 1-37. doi.org/ 10.1002/cpbi.3
26.    Bateman A. Martin M. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Bernett E. et al. UniProt: the universal protein knowledgebase. Nucleic Acids Research. 2023; 51(D1): D523–D531. doi,org/ 10.1093/nar/gkac1052
27.    Lai X. Wichers HJ. Soler‐Lopez M. Dijkstra BW. Structure of human tyrosinase related protein 1 reveals a binuclear zinc active site important for melanogenesis. Angewandte Chemie. 2017; 129(33): 9944–9947. doi.org/10.1002/ange.201704616
28.    Di Tommaso P. Moretti S. Xenarios I. Orobitg M. Montanyola A. Chang J. Taly J. et al. T-Coffee: A web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research. 39(Suppl 2). doi.org/10.1093/nar/gkr245
29.    Sendovski M. Kanteev M. Ben-Yosef VS. Adir N. Fishman A. First structures of an active bacterial tyrosinase reveal copper plasticity. Journal of Molecular Biology. 2011; 405(1): 227–237. doi.org/10.1016/j.jmb.2010.10.048
30.    Yusuf M. Baroroh U. Hasan K. Rachman SD. Ishmayana S. Toto S. Computational model of the effect of a surface-binding site on the saccharomycopsis fibuligera r64 α-amylase to the substrate adsorption. Bioinformatics and Biology Insights. 2017; 11: 1-8. doi.org/ 10.1177/1177932217738764 Yusuf M. Baroroh U. Hasan K. Rachman SD. Ishmayana S. Toto S. Computational model of the effect of a surface-binding site on the saccharomycopsis fibuligera r64 α-amylase to the substrate adsorption. Bioinformatics and Biology Insights. 2017; 11: 1-8. doi.org/ 10.1177/1177932217738764
31.    Tian W. Chen C. Lei X. Zhao J. Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research. 2018; 46(W1): W363–W367. doi.org/ 10.1093/nar/gky473
32.    Sippl MJ. Recognition of errors in three-dimensional structures of proteins. Protein. 1993; 17(4): 355-362. doi.org/ https://doi.org/10.1002/prot.340170404
33.    Yashin A. Yashin Y. Wang JY. Nemzer B. Antioxidant and antiradical activity of coffee. Antioxidants. 2013; 2(4): 230–245. doi.org/10.3390/antiox2040230
34.    Sholichah E. Apriani R. Desnilasari D. Karim MA. Hervelly H. By-product kulit kopi arabika dan robusta sebagai sumber polifenol untuk antioksidan dan antibakteri. Jurnal Industri Hasil Perkebunan. 2019; 14(2): 57-66. doi.org/ 10.33104/jihp.v14i2.5195
35.    Manasa V. Padmanabhn A. Anu KAA. Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Management. 2021; 120(2): 762-771. doi.org/10.1016/j.wasman.2020.10.045
36.    Kieu Tran TM. Kirkman T. Nguyen M. Van Vuong Q. Effects of drying on physical properties, phenolic compounds and antioxidant capacity of Robusta wet coffee pulp (Coffea canephora). Heliyon. 2020; 6(7): 1-7. doi.org/ 10.1016/j.heliyon.2020.e04498
37.    Rohaya S. Anwar SH. Amhar AB. Sutriana A. Muzaifa M. Antioxidant activity and physicochemical composition of coffee pulp obtained from three coffee varieties in Aceh, Indonesia. Iop Conference Series: Earth And Environmental Science; 1182: 1-7. doi.org/ 10.1088/1755-1315/1182/1/012063
38.    Alara OR. Abdurahman NH. Ukaegbu CI. Extraction of phenolic compounds: A review. Current Research in Food Science. 2021; 4:200–214. doi.org/10.1016/j.crfs.2021.03.011
39.    Eldalawy R. Kutaif HR. Tawfeeq AT. Fayyadh SM. Quantitative analysis of caffeine in different commercial kinds of coffee in Iraq. Research Journal of Pharmacy and Technology. 2023; 16(7):3358–3360. doi.org/10.52711/0974-360X.2023.00555
40.    Ameca GM. Cerrilla MEO. Cordoba PZ. Cruz AD. Hernandez MS. Jose Herreea H. Chemical composition and antioxidant capacity of coffee pulp. Ciencia e Agrotecnologia. 2018; 42(3): 307–313. doi.org/ 10.1590/1413-70542018423000818
41.    Olechno E. Puścion-Jakubik A. Zujko ME. Socha K. Influence of various factors on caffeine content in coffee brews. Foods. 2021; 10(6):1-29. doi.org/ 10.3390/foods10061208
42.    Tello J. Viguera M. Calvo L. Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide. Journal of Supercritical Fluids. 2011; 59: 53–60. doi.org/ 10.1016/j.supflu.2011.07.018
43.    Caracostea LM. Sîrbu R. Florica B. Determination of caffeine content in arabica and robusta green coffee of indian origin. European Journal of Natural Sciences and Medicine. 2021; 4(1): 69-79.
44.    Purwoko T. Suranto. Setyaningsih R. Marliyana SD. Chlorogenic acid and caffeine content of fermented robusta bean. Biodiversitas. 2022; 23(2): 902–906. doi.org/10.13057/biodiv/d230231
45.    Elfiah U. Perdanakusuma SD. Saputro DI. Misnawi. Anti-inflammation and anti-tyrosinase effect of Robusta coffee BP-42 extract gel on clinical appearance after skin grafting in long evans rats. Research Journal of Pharmacy and Technology. 2024; 17(2): 636–638.
46.    Elfiah U. Kholid FA. Safitri A. Topical application of robusta coffee extract gel enhances angiogenesis, fibroblast, collagen density, and epithelial thickness on wound healing of skin graft in rats. Research Journal of Pharmacy and Technology. 2024; 17(6): 2788–2792. doi.org/10.52711/0974-360X.2024.00438
47.    Trott O. Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 31(2): 455–461. doi.org/10.1002/jcc.21334
48.    Eberhardt J. Santos-Martins D. Tillack AF. Forli S. Autodock vina 1.2.0: new docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling. 61(18): 3891–3898. doi.org/10.1021/acs.jcim.1c00203

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available