Author(s):
Diah Tri Utami, Erna Prawita Setyowati, Yosi Bayu Murti, Edy Meiyanto4, Wirasti
Email(s):
erna_prawita@ugm.ac.id
DOI:
10.52711/0974-360X.2025.00515
Address:
Diah Tri Utami1,2, Erna Prawita Setyowati3*, Yosi Bayu Murti3, Edy Meiyanto4, Wirasti5
1Doctoral Program in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
2Department of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Jambi 36361, Indonesia.
3Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
4Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
5Pharmacy Undergraduate Study Program, Universitas Muhammadiyah Pekajangan Pekalongan, Central Java, 51173, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 8,
Year - 2025
ABSTRACT:
The objective of this research was to evaluate the bioactive components of chloroform (CHCl3) and ethanol (EtOH) extracts from marine sponges (Stylotella sp., Agelas dispar, Neopetrosia sp., Aaptos sp., Haliclona sp.) using TLC-bioautography technique, inhibitor tyrosinase activity, and anti-toxicity against B16F10 melanoma and Vero cells line. TLC studies used solvent systems as mobile phases to identify active antioxidant agents. The inhibitory activity of tyrosinase was assessed using a colorimetric technique, and MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole] was used to analyze the viability of B16F10 and Vero cells treated with various concentrations (15.63-1000µg/mL) of marine sponge extracts. TLC bioautography analysis utilizing different polarity mobile phases separated different bands from tested marine sponge CHCl3 and EtOH extracts with antioxidant activity. Polar substances in CHCl3 and EtOH extracts of marine sponges contributed significantly to their antioxidant activity. The data showed that marine sponge Neopetrosia sp. and Aaptos sp. could reduce tyrosinase activity, and extracts at 15.63-1000µg/mL concentrations did not show substantial toxicity against B16F10 and Vero cells. Complex substances were proposed to be responsible for the antioxidant and tyrosinase inhibitor activity of Neopetrosia sp. and Aaptos sp. extracts. Data shows that marine sponges Neopetrosia sp. and Aaptos sp. might contain attractive antioxidants and tyrosinase inhibitors.
Cite this article:
Diah Tri Utami, Erna Prawita Setyowati, Yosi Bayu Murti, Edy Meiyanto4, Wirasti. Detection of Antioxidant Properties using TLC-Bioautography Technique, Inhibitor Tyrosinase Activity and Anti-toxicity against B16F10 and Vero Cells from Extracts of Marine Sponge. Research Journal Pharmacy and Technology. 2025;18(8):3579-5. doi: 10.52711/0974-360X.2025.00515
Cite(Electronic):
Diah Tri Utami, Erna Prawita Setyowati, Yosi Bayu Murti, Edy Meiyanto4, Wirasti. Detection of Antioxidant Properties using TLC-Bioautography Technique, Inhibitor Tyrosinase Activity and Anti-toxicity against B16F10 and Vero Cells from Extracts of Marine Sponge. Research Journal Pharmacy and Technology. 2025;18(8):3579-5. doi: 10.52711/0974-360X.2025.00515 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-18
REFERENCES:
1. Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants. 2022; 11(6): 1-33.doi.org/10.3390/antiox11061121
2. Humphrey S, Brown, SM, Cross SJ, Mehta R. Defining Skin Quality: Clinical Relevance, Terminology, and Assessment. Dermatologic Surgery. 2021; 47(7): 974-81. doi.org/10.1097/DSS.0000000000003079
3. Wong QYA, Chew FT. Defining Skin Aging and Its Risk Factors: A Systematic Review and Meta-analysis. Scientific Report. 2021; November 11; 11(22075): 1-13. doi.org/10.1038/s41598-021-01573-z
4. Devi A, Dwibedi V, Khan ZA. Natural Antioxidants in New Age-Related Diseases. Revista Brasileira de Farmacognosia. 2021; September 24; 31: 387-407. doi.org/10.1007/s43450-021-00175-0
5. Liu R, Mabury SA. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environmental Science and Technology. 2020; September 11; 54(19): 11706-19.doi.org/10.1021/acs.est.0c05077
6. Xu X, Liu A, Hu S, Ares I, Martínez-Larrañaga MR, Wang X, Martínez M, Anadón A, Martínez MA. Synthetic Phenolic Antioxidants: Metabolism, Hazards and Mechanism of Action. Food Chemistry. 2021; 353(2021): 1-15. doi.org/10.1016/j.foodchem.2021.129488
7. Hong Y, Wang Z, Barrow CJ, Dunshea FR, Suleria HAR. High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants. 2021; February 4; 10(2): 1-22. doi.org/10.3390/antiox10020234
8. Kim H, Tse Y, Webb A, Mudd E, Abedin MR, Mormile M, Dutta S, Rege K, Barua S. PolyRad – Protection Against Free Radical Damage. Scientific Reports. 2020; 10: 1-13. doi.org/10.1038/s41598-020-65247-y
9. Ku S, Park G, Jang YP. Two-Dimensional High-Performance Thin-Layer Chromatography with Bioautography for Distinguishing Angelicae Dahuricae Radix Varieties: Chemical Fingerprinting and Antioxidant Profiling. Plants. 2024; May 13; 13(10): 1-11. doi.org/10.3390/plants13101348
10. Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Marine Drugs 2020; December 21; 18(12): 1-123. doi.org/10.3390/md18120657
11. Setyowati EP, Purwantiningsih, Yulianny EFM, Suci R, Rifka HN, Moeksa DNC. Cytotoxic and Antimicrobial Activities of Ethyl Acetate Extract from Fungus Trichoderma reesei strain JCM 2267, Aspergillus flavus strain MC- 10-L, Penicillium sp., and Aspergillus fumigatus Associated with Marine Sponge Stylissa flabelliformis. Research Journal Pharmacy and Technology. 2022; 14(10): 5126–32. doi.org/10.52711/0974-360X.2021.00893
12. Marmouzi I, Ezzat SM, Mostafa ES, Jemli ME, Radwan RA, Faouzi MEA, Tamsouri M, Kharbach M. Isolation of Secondary Metabolites From The Mediterranean Sponge Species; Hemimycale columella and Its Biological Properties. SN Applied Sciences. 2021; 3(2): 1-13. doi.org/10.1007/s42452-020-04052-8
13. Mahfur, Setyowati EP, Wahyuono S, Purwantini I. Sponge Hyrtios reticulatus: Phytochemicals and Bioactivities. Research Journal of Pharmacy and Technology. 2023; 15(6): 2855-61. doi.org/10.52711/0974-360X.2022.00477
14. Setyowati EP, Jenie UA, Sudarsono, Kardono LBS, Rahmat R. Identification of Cytotoxic Constituent of Indonesian Sponge Kaliapsis sp. (Bowerbank). Pakistan Journal of Biological Sciences. 2008; November 01; 11(22): 2560-6. doi.org/10.3923/pjbs.2008.2560.2566
15. Rokkam R, Pinipay F, Paidi HK, Tamanam RR. Phytochemical Analysis and Evaluation of The Antioxidant and Anti-Inflammatory Activity of Canavalia gladiata. Research Journal of Pharmacy and Technology. 2023; October 31; 16(7): 3157-64.doi.org/10.52711/0974-360X.2023.00519
16. Madhvi SK, Sharma M, Iqbal J, Younis M, Sheikh R. Phytochemical Analysis, Total Flavonoid, Phenolic Contents and Antioxidant Activity of Extracts from The Leaves of Rhododendron arboreum. Research Journal of Pharmacy and Technology. 2020; April 30; 13(4): 1701-06.doi.org/10.5958/0974-360X.2020.00307.8
17. Akbar A, Rasyid H, Natsir H, Bahrun, Soekamto NH. Tyrosinase Inhibitory Activity of n-Hexane, Ethyl Acetate and Methanol Extracts of Padina sp. Research Journal of Pharmacy and Technology. 2024; June 3; 17(3): 1173-80.doi.org/10.52711/0974-360X.2024.00182
18. Wiliantari S, Iswandana R, Elya B. Evaluation of Antioxidant Activity, Tyrosinase Inhibition, and Stability of Face Mask Cream Formulation from Sweet ranadilla (Passiflora ligularis Juss) Seed Fraction. Research Journal of Pharmacy and Technology. 2023; February 5; 16(11): 5255-63. doi.org/10.52711/0974-360X.2023.00852
19. Shanthi D, Saravanan R. Evaluation of Cytotoxicity of normal Vero and Anticancer Activity of Human Breast Cancer Cell Lines by Aqueous Unripe Fruit Extract of Solanum torvum. Research Journal of Pharmacy and Technology. 2021; 25; 14(7): 3504-08. doi.org/10.52711/0974-360X.2021.00607
20. Pradhan M. Sribhuwaneswari S, Karthikeyan D, Sunita M, Pavani S, Atul CN, Umesh M, Kamalakannan K, Saravanankumar A, Sivakumar T. In-vitro Cytoprotection Activity of Foeniculum vulgare and Helicteres isora in Cultured Human Blood Lymphocytes and Antitumour Activity against B16F10 Melanoma Cell Line. Research Journal of Pharmacy and Technology. 2008; September 15; 1(4): 450-52. https://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=1&issue=4&article=034
21. Buranaamnuay K. The MTT Assay Application to Measure The Viability of Spermatozoa: A Variety of The Assay Protocols. Open Veterinary Journal. 2021; May 8; 11(2): 251-69.doi.org/10.5455/OVJ.2021.v11.i2.9
22. Widiastuti NK, Virginia NM, Yastawan IMF. Cytotoxicity Evaluation of Erythrina lithosperma Miq. Leaf Extract against Vero Cell Lines: In Vitro Study. Research Journal of Pharmacy and Technology. 2023; October 10; 16(1): 153-8.doi.org/10.52711/0974-360X.2023.00028
23. Oktiansyah R, Widjajanti, Setiawan A, Nasution SSA, Mardiyanto, Elfita. Antibacterial and Antioxidant Activity of Endophytic Fungi Extract Isolated from Leaves of Sungkai (Peronema canescens). Science Technology Indonesia. 2023; April; 8(2): 170–177. doi.org/10.26554/sti.2023.8.2.170-177
24. Prayong P, Barusrux S, Weerapreeyakul N. Cytotoxic Activity Screening of some Indigenous Thai Plants. Fitoterapia. 2008; July 11; 79(7-8): 598–601. doi: 10.1016/j.fitote.2008.06.007
25. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine Natural Products. Natural Product Reports. 2016; February 3; 33: 382-431. doi.org/10.1039/C5NP00156K
26. Kumar M, Pal AK. A Review of Bioactive Compounds from Marine Organisms with Special Mention on The Potential of Marine Sponges in Pharmacological Applications. Journal of. Marine Biological Association of India. 2016; June 30; 58(1): 87-96. doi:10.6024/jmbai.2016.58.1.1862-11
27. Mioso R, Marante FJT, Bezerra RDS, Borges FVP, Santos BVO, Laguna IHB. Cytotoxic Compounds Derived from Marine Sponges. A Review (2010–2012). Molecules. 2017; January 28; 22(2): 1-34. doi.org/10.3390/molecules22020208
28. Forenza S, Minale L, Riccio R, Fattorusso E. New Bromo-pyrrole Derivatives from The Sponge Agelas oroides. Journal of the Chemical Society D: Chemical Communications. 1971 June 7; 18: 1129-30. doi:10.1039/C29710001129.
29. Cheng C, Othman EM, Reimer A, Grüne M, Kozjak-Pavlovic V, Stopper H, Hentschel U, Abdelmohsen UR. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Letters. 2016; 22; 57(25): 2786-9. doi.org/10.1016/j.tetlet.2016.05.042
30. Baldwin JW, Whitehead RC. On the Biosynthesis of Manzamines. Tetrahedron Letters. 1992; 7; 33(15): 2059-62. doi.org/10.1016/0040-4039(92)88141-Q
31. Ashok P, Ganguly S, Murugesan S. Manzamine Alkaloids: Isolation, Cytotoxicity, Antimalarial Activity and SAR Studies. Drug Discovery Today. 2014; 19(11): 1781-91. doi.org/10.1016/j.drudis.2014.06.010
32. El Sayed KA, Kelly M, Kara UAK, Ang KKH, Katsuyama I, Dunbar DC, Khan AA, Hamann MT. New Manzamine Alkaloids with Potent Activity against Infectious Diseases. Journal of the American Chemical Society. 2001; 10; 123(9): 1804-08. doi.org/10.1021/ja002073o
33. Matsunaga S, Fusetani N, Konosu S. Bioactive Marine Metabolites, IV. Isolation and the Amino Acid Composition of Discodermin A, an Antimicrobial Peptide, from the Marine Sponge Discodermia kiiensis. Journal of Natural Products. 1985; March 1; 48(2): 236-241. doi.org/10.1021/np50038a006
34. Nakao Y, Kuo J, Yoshida WY, Kelly M, Scheuer PJ. More Kapakahines from the Marine Sponge Cribrochalina olemda. Organic Letters. 2003; 5; 5(9): 1387-90.doi.org/10.1021/ol026830u
35. Goto Y, Kamihira R, Nakao Y, Nonaka M, Takano R, Xuan X, Kato K. The Efficacy of Marine Natural Products against Plasmodium falciparum. The Journal of Parasitology. 2021; 12; 107(2): 284-288. doi.org/10.1645/20-93
36. Newhouse T, Lewis CA, Baran PS. Enantiospecific Total Syntheses of Kapakahines B and F. Journal of the American Chemical Society. 2009 April 17; 131(18): 6360-1. doi.org/10.1021/ja901573x
37. Su JY, Meng YH, Zeng LM, Fu X, Schmitz FJ. Stellettin A, a New Triterpenoid Pigment from the Marine Sponge Stelletta tenuis. Journal of Natural Products. 1994; 1; 57(10): 1450-1. doi.org/10.1021/np50112a017
38. Silva ED, Scheuer PJ. Manoalide, an Antibiotic Sesterterpenoid from the Marine Sponge Luffariella variabilis (polejaeff). Tetrahedron Letters. 1980; 21(17): 1611-14. doi.org/10.1016/S0040-4039(00)77766-5
39. Loya S, Hizi A. The Inhibition of Human Immunodeficiency Virus Type 1 Reverse Transcriptase by Avarol and Avarone Derivatives. FEBS Letters. 1990; August 20; 269(1): 131-4. doi.org/10.1016/0014-5793(90)81137-D
40. Wellington KD, Cambie RC, Rutledge PS, Bergquist PR. Chemistry of Sponges. 19. Novel Bioactive Metabolites from Hamigera tarangaensis. Journal of Natural Products. 1999; 1; 63(1): 79–85. doi.org/10.1021/np9903494
41. Gam DH, Park JH, Hong JW, Jeon SJ, Kim JH, Kim JW. Effects of Sargassum thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP-1 and MMPs. Molecules. 2021; 5; 26(23): 1-16. doi.org/10.3390/molecules26237381
42. Insaf A, Parveen R, Gautam G, Samal M, Zahiruddin S, Ahmad S. A Comprehensive Study to Explore Tyrosinase Inhibitory Medicinal Plants and Respective Phytochemicals for Hyperpigmentation; Molecular Approach and Future Perspectives. Current Pharmaceutical Biotechnology. 2023; 1; 24(6): 780-813. doi.org/10.2174/1389201023666220823144242
43. Feng D, Fang Z, Zhang P. The Melanin Inhibitory Effect of Plants and Phytochemicals: A Systematic Review. Phytomedicine. 2022; 18; 107: 154449. doi.org/10.1016/j.phymed.2022.154449
44. Utami DT, Setyowati EP, Murti YB, Meiyanto E. Marine Resources with Melanogenic Regulatory Properties: Seagrass, Seaweed, and Marine Sponges as Anti-melanogenic Agents. Journal Applied Pharmaceutical Science. 2024; 5; 14(7): 045–058. doi.org/10.7324/JAPS.2024.168569
45. Zhang Z, Peng Y, Meng W, Pei L, Zhang X. Browning Inhibition of Seabuckthorn Leaf Extract on Fresh-cut Potato Sticks During Cold Storage. Food Chemistry. 2022; 30; 389: 133076. doi.org/10.1016/j.foodchem.2022.133076
46. Qaralleh, H. Chemical and Bioactive Diversities of Marine Sponge Neopetrosia. Bangladesh Journal of Pharmacology. 2016; 3; 11(2): 433-52. doi.org/10.3329/bjp.v11i2.26611
47. Beesoo R, Neergheen VS, Bhagooli R, Reid AM, Lambrechts IA, Gibango L, Bodiba D, Lall N, Bahorun T. In Vitro Antioxidant, Antibacterial, Cytotoxic, and Epigenetic Screening of Crude Extract and Fractions of the Marine Sponge Neopetrosia exigua from Mauritius Waters. Scientific African. 2023; 30; 21(2023): 1-14. doi.org/10.1016/j.sciaf.2023.e01867
48. Kowalska T, Sajewicz M. Thin-Layer Chromatography (TLC) in the Screening of Botanicals–Its Versatile Potential and Selected Applications. Molecules. 2022; 5; 27(19): 1-23. doi.org/10.3390/molecules27196607
49. Mateos R, Pérez-Correa JR, Domínguez H. Bioactive Properties of Marine Phenolics. Marine Drugs. 2020; 30; 18(10): 1-65. doi.org/10.3390/md18100501
50. Zhang X, Meng W, Chen Y, Peng Y. Browning inhibition of plant extracts on fresh-cut fruits and vegetables—A review. Journal of Food Processing and Preservation. 2022; 18; 46(5): e16532.doi.org/10.1111/jfpp.16532
51. Bhalodiya MD, Chavda JR, Patel NK, Patel AI, Manek RA. Evaluation of Solvent Extraction Process for Asparagus racemosus Root Extract through the Determination of its Phenolic Content and Antioxidant Activity Assay. Research Journal of Pharmacy and Technology. 2022; 22; 14(10): 5108-14.doi.org/10.52711/0974-360X.2021.00890
52. Fan, X. Chemical Inhibition of Polyphenol Oxidase and Cut Surface Browning of Fresh-Cut Apples. Critical Reviews in Food Science and Nutrition. 2022; 13; 63(27): 8737–8751.doi.org/10.1080/10408398.2022.2061413
53. Xu C, Lu M, Li R, Liu D, Guo C. Super-atmospheric Oxygen Modified Atmosphere Package of Whole and Fresh-Cut Fruits and Vegetables. Food Bioprocess Technology. 2023; 03; 17(2024): 2499-2518. doi:10.1007/s11947-023-03215-w