Author(s): Ashraf Ali Hamid Alashhab, Halilu Mshelia Emmanuel, Airemwen Collins Ovenseri, Johnbull Aiwaguore Obarisiagbon

Email(s): acollins@ciu.edu.tr

DOI: 10.52711/0974-360X.2025.00522   

Address: Ashraf Ali Hamid Alashhab1, Halilu Mshelia Emmanuel1,2, Airemwen Collins Ovenseri1*, Johnbull Aiwaguore Obarisiagbon3
1Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus.
2Department of Pharmacognosy and Ethnomedicine, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
3Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Igbinedion University, Okada, Edo State, Nigeria.
*Corresponding Author

Published In:   Volume - 18,      Issue - 8,     Year - 2025


ABSTRACT:
Nerium oleander (Apocynaceae) has been used traditionally for the treatment of inflammation, bacterial infection, pain and heart diseases. The purpose of this research was to synthesize silver nanoparticles (AgNPs) of Nerium oleander leaves extract using an eco-friendly technique. The AgNPs were evaluated using scanning electron microscope (SEM), X-ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). Examination of the powdered leaves using a microscope revealed the presence of paracytic stomata. Phytochemical screening confirmed the presence of cardiac glycosides, saponins, flavonoids, and tannins. The free radical scavenging assay results indicated that the leaves extract and synthesized AgNPs possessed antioxidant activity when compared to ascorbic acid (standard) with half-maximal inhibitory concentrations (IC50) of 3.70, 2.36 and 1.94mg/mL for the extract, silver nanoparticles and ascorbic acid respectively. The results of the antimicrobial studies showed zones of inhibition ranging from 3.26-7.49mm and 2.48-6.72mm for the synthesized AgNPs and the leaves extract respectively which indicated significant antibacterial activity against both gram positive and negative bacteria used in the research. However, the activity against the gram-positive bacteria was significantly higher than that of the gram-negative bacteria (P<0.05). Silver nanoparticles were successfully synthesized in the study using Nerium oleander leaves extract and they could have potential pharmaceutical applications as antimicrobial and antioxidant agents due to their relatively small particle sizes and large surface area.


Cite this article:
Ashraf Ali Hamid Alashhab, Halilu Mshelia Emmanuel, Airemwen Collins Ovenseri, Johnbull Aiwaguore Obarisiagbon. Green Synthesis of Nerium oleander leaves extract Silver Nanoparticles and Evaluation of its Antibacterial and Antioxidant Activities. Research Journal Pharmacy and Technology. 2025;18(8):3629-6. doi: 10.52711/0974-360X.2025.00522

Cite(Electronic):
Ashraf Ali Hamid Alashhab, Halilu Mshelia Emmanuel, Airemwen Collins Ovenseri, Johnbull Aiwaguore Obarisiagbon. Green Synthesis of Nerium oleander leaves extract Silver Nanoparticles and Evaluation of its Antibacterial and Antioxidant Activities. Research Journal Pharmacy and Technology. 2025;18(8):3629-6. doi: 10.52711/0974-360X.2025.00522   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-25


REFERENCES:
1.    Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M. Silver nanoparticles: Therapeutic uses, toxicity, and safety issues. Journal of Pharmaceutical Sciences. 2014; 103(2): 1931-1944. https://doi.org/10.1002/jps.24001
2.    Abdelgyed ML, Moataz HE, Mohamed AA, Amr AE. Efficiency, evaluation and characterization of microbial, phyto and chemically synthesized silver nanoparticles. Research Journal of Pharmacy and Technology. 2024; 17(2): 717-723. https://doi.org/10.52711/0974-360X.2024.00111
3.    Airemwen CO, Halilu ME. Formulation and in vitro evaluation of polymeric metronidazole nanoparticles. Pakistan Journal of Pharmaceutical Sciences. 2022; 35(5): 1333-1338. https://doi.org/10.36721/PJPS.2022.35.5.1333-1338.1
4.    Shree KS. An Introduction to Nanotechnology and its Implications. The Himalayan Physics. 2013; 4(4): 78-81. https://doi.org/10.3126/hj.v5i0.12877
5.    Kalyankar TM, Butle SR, Chamwad GN. Application of Nanotechnology in Cancer Treatment. Research Journal of Pharmacy and Technology. 2012; 5(9): 1161-1167.
6.    Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nature Materials. 2015; 14(3): 567–576. https://doi.org/10.1038/nmat4281
7.    Yang Y, Jin P, Zhang X, Ravichandran N, Ying H, Yu C, Ying H, Xu Y, Yin J, Wang K.  New epigallocatechin-3-gallate (EGCG) nanocomplexes co-assembled with 3-mercapto-1-hexanol and β-lactoglobulin for improvement of antitumor activity. Journal of Biomedical Nanotechnology. 2017; 13(2): 805-814 http://dx.doi.org/10.1166/jbn.2017.2400.
8.    El-Waseif AA, Abobaker RA, Abdel-Monem MO, Attia AA, Hassan MG. The Lactobacillus brevis prebiotic pure exopolysaccharide and its nano crystalline characterization, anti-colon cancer and cytotoxicity. Research Journal of Pharmacy and Technology. 2021; 14(11): 5998-6002. https://doi.org/10.52711/0974-360X.2021.01042
9.    Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences. 2019; 17(4): 1534-1540. https://doi.org/10.3390/ijms17091534
10.    Ethiraj AS, Jayanthi S, Ramalingam C, Banerjee C. Control of size and antimicrobial activity of green synthesized silver nanoparticles. Materials Letters. 2016; 185(6): 526-529. https://doi.org/10.1016/j.matlet.2016.07.114
11.    Kasivishwanathan CJ, Sekar N, Dharmaraj S, Lakshmanan P. Biogenic synthesis of Copper nanoparticles from flower extract and their cell cytotoxic potential. Research Journal of Pharmacy and Technology. 2024; 17(2): 763-768. https://doi.org/10.52711/0974-360X.2024.00119
12.    Makarov VV, Love AJ, Sinitsyna OV. Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae. 2014; 6(1): 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44
13.    Hisham ME, El-Waseif AA, El-Ghwas DE. Assessment of anti-inflammatory, antimicrobial and cytotoxicity of chitosan-moringa composite and calcium hydroxide nanoparticles as an intra-canal medicament in vitro. Research Journal of Pharmacy and Technology. 2024; 17(2): 776-784. https://doi.org/10.52711/0974-360X.2024.00121
14.    Ahmad N, Sharma S. Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green and Sustainable Chemistry. 2012; 4(3): 141-150. http://dx.doi.org/10.4236/gsc.2012.24020
15.    Meyers MA., Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Progress in materials Science. 2006; 51(4): 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003
16.    Umamaheswari R, Kothai S. Effectiveness of copper nanoparticles loaded microsponges on drug release study, cytotoxicity and wound healing activity. Research Journal of Pharmacy and Technology. 2020; 13(9): 4357-4360. https://doi.org/10.5958/0974-360X.2020.00770.2
17.    Fariq A, Khan T, Yasmin A. Microbial synthesis of nanoparticles and their potential applications in biomedicine. Journal of Applied Biomedicine, 2017; 15(4): 241-248 https://doi.org/10.1016/j.jab.2017.03.004.
18.    Utpal J. Sovan P. Mohanta GP. Manna PK. Manavalan R. Nanoparticles: A Potential Approach for Drug Delivery. Research Journal of Pharmacy and Technology. 2011; 4(7): 1016-19
19.    Soumya K, Amit A, Ajazuddin. NA. Biomedical applications of nanobiotechnology for drug design. delivery and diagnostics. Research Journal of Pharmacy and Technology. 2014; 7(8): 915-925.
20.    Karawya M, Balbaa S, Khayyal S. Estimation of cardenolides in Nerium oleander. Plant Medicals 1973; 23(1): 70-73. https://doi.org/10.1055/s-0028-1099414
21.    Ashwini K, Rajeshkumar S, Anitha R, Lakshmi T. Symplocos racemosa bark assisted copper nanoparticles and its antibacterial activity against Staphylococcus aureus and Lactobacilli Species. Research Journal of Pharmacy and Technology. 2021; 14(1): 300-306 https://doi.org/10.5958/0974-360X.2021.00054.8.
22.    Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS. Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitology Research. 2013; 112(4): 981-990. https://doi.org/10.1007/s00436-012-3220-3
23.    Erdemoglu N, Kupeli E and Yesilada E. Anti-inflammatory and antinociceptive activity assessment of plants used as remedy in Turkish folk medicine. Journal of Ethnopharmacology. 2003; 89(1): 123-129. https://doi.org/10.1016/s0378-8741(03)00282-4
24.    Dharmadhas JS, Danaraj J, Packiavathy VSI. Green fabrication of Nerium oleander mediated silver nanomaterials: synthesis, structural, and stability analysis. Journal of Biosynthetic Nanoscience. 2023; 13: 1177-1183. http://dx.doi.org/10.1007/s12668-023-01148-4
25.    Hadizadeh I, Peivastegan B, Kolahi M. Antifungal activity of nettle (Urtica dioica L.), colocynth (Citrullus colocynthis L. Schrad), oleander (Nerium oleander L.) and konar (Ziziphus spina-christi L.) extracts on plants pathogenic fungi. Pakistan Journal of Biological Sciences. 2009; 12(1): 58-69. https://doi.org/10.3923/pjbs.2009.58.63
26.    Begum S, Siddiqui BS, Sultana R. Bio-active cardenolides from the leaves of Nerium oleander. Phytochemistry. 1999; 50(3): 435-438. https://doi.org/10.1016/s0031-9422(98)00523-8
27.    Farkhondeh T, Kianmehr M, Kazemi T, Samarghandian S and Khazdair MR. Toxicity effects of Nerium oleander, basic and clinical evidence: A comprehensive review. Human and Experimental Toxicology. 2020; 39(6): 773-784. https://doi.org/10.1177/0960327120901571
28.    World Health Organization (WHO). Quality control methods for medicinal plant materials. World Health Organization, Geneva. 2011; 5-43.
29.    Halilu EM, Ngweh VA, Airemwen CO. Green synthesis of silver nanoparticles from Parinari curatellifolia methanol stem bark extract and evaluation of antioxidant and antimicrobial activities. Tropical Journal of Natural Product Research. 2023; 7(3): 2498-2505. http://www.doi.org/10.26538/tjnpr/v7i3.5
30.    Omeche NB, Ezeala IC, Ikem CJ, Uzor PF. Green synthesis of silver nanoparticles using Cola nitida Nut Extract (Vent.) Schott and Endl. (Malvaceae), characterization and the determination of their antimicrobial activity. Tropical Journal of Natural Product Research. 2022; 6(1): 156-160. http://www.doi.org/10.26538/tjnpr/v6i1.25
31.    Paliwal R, Veena S, Pracheta, SS. Elucidation of Free Radical Scavenging and Antioxidant activity of aqueous and hydro-ethanolic extracts of Moringa oleifera pods. Research Journal of Pharmacy and Technology. 2011; 4(4): 566-571. http://www.doi.org/10.26538/tjnpr/v6i1.25
32.    Malathy D. Cytotoxicity and antimicrobial activities of copper nanoparticles synthesised using Mimosa pudica. Research Journal of Pharmacy and Technology. 2019; 2(9): 4359-4364. https://doi.org/10.5958/0974-360X.2019.00750.9
33.    Gayathri V, Nivedha S, Pujita V, Romauld S. Green synthesis of copper nanoparticles using bracts of Musa paradisiaca (monthan) and study of its antimicrobial and antioxidant activity. Research Journal of Pharmacy and Technology. 2020; 13(2): 781-86. https://doi.org/10.5958/0974-360X.2020.00147.X
34.    Hossain MR, Biplob AI, Sharif SR, Bhuiya AM, Sayem ASM. Antibacterial activity of green synthesized silver nanoparticles of Lablab Purpureus flowers extract against human pathogenic bacteria. Tropical Journal of Natural Product Research. 2023; 7(8): 3647-3651. http://www.doi.org/10.26538/tjnpr/v7i8.12
35.    Nzekekwu AK, Abosede OO. Green synthesis and characterization of silver nanoparticles using leaves extracts of neem (Azadirachta indica) and bitter leaf (Vernonia amygdalina), Journal of Applied Science and Environment Management. 2019; 23(4):695-699. https://doi.org/10.4314/jasem.v23i4.19
36.    Lih HT, Airemwen CO, Halilu ME. Phytochemical studies and evaluation of silver nanoparticles synthesized from Solanum elaeagnifolium leaves extract for antioxidant and antibacterial activities. Tropical Journal of Natural Product Research. 2024; 8(2):6440-6445. https://doi.org/10.26538/tjnpr/v8i2.36
37.    Rathnan RK, Jose F, Pius I, Sathar L, Jimmy N, Sasidharan S, Mechoor A. Comparative Study of Antimicrobial Activity of Leaves and Callus Extract of Ipomea turpethum against Antibiotic Resistance Pathogenic Microorganisms. Research Journal Pharmacy and Technology. 2012; 5(6): 805-812.
38.    Gan L, Zhang S, Zhang Y, He S, Tian Y. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Preparative Biochemistry and Biotechnology, 2018; 48(7): 582-588. https://doi.org/10.1080/10826068.2018.1476880
39.    Prasad TN, Elumalai EK. Biofabrication of silver nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine. 2011; 1(6): 439-442. https://doi.org/10.1016/S2221-1691(11)60096-8
40.    Alhajj L, Airemwen CO and Pozharani LB. Formulation of aspirin nanoparticles using solvent evaporation method and in vivo evaluation of its antithrombotic effect. Pakistan Journal of Pharmaceutical Sciences. 2023; 36(5):1583-1589. https://doi.org/10.36721/PJPS.2023.36.5.SP.1583-1589.1
41.    Lakshman KD, Siva SS, Sumaya ZS, Maneesha RK, Gayathri K, Godlaveeti SK, Lekshmi G. Phytochemical mediated synthesis of silver nanoparticles and their antibacterial activity. Journal of Applied Sciences. 2021; 3:631-640. https://link.springer.com/article/10.1007/s42452-021-04641-1
42.    Gurunathan S, Han JW, Kwon DN. Enhanced anti-bacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Research Letters. 2014; 9(3): 373-381. https://doi.org/10.1186/1556-276x-9-373




Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available