Author(s):
Betelhem Hailu T, Naveen Kumar A.D, Zenebe Teka M, Zenebe Hagos, Teklay Meles G, Gebgrekidan K, Salah Hamza S, Kamalakararao K, Krishna Chaithanya K, Sudhish Rai
Email(s):
krishnachaitanyawc@gmail.com
DOI:
10.52711/0974-360X.2025.00524
Address:
Betelhem Hailu T1, Naveen Kumar A.D2, Zenebe Teka M1, Zenebe Hagos3, Teklay Meles G1, Gebgrekidan K1, Salah Hamza S4, Kamalakararao K5, Krishna Chaithanya K3,4*Sudhish Rai6
1Department of Biology, Post Graduate Applied Microbiology Program, College of Natural and Computational Sciences, Aksum University, Axum, Ethiopia.
2School of Medicine, Texila American University, Lusaka, Zambia, Central Africa.
3Department of Chemistry, College of Natural and Computational Sciences, Aksum University, Axum, Ethiopia.
4Department of Biochemistry, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
4Department of Chemistry, College of Natural and Computational Sciences, Hawassa University, Hawassa, Ethiopia.
4Department of Biochemistry, University College of Science and Technology, Adikavi Nannaya University, Rajamahendravaram, Andhra Pradesh, India.
6Jagrani Devi Pharmacy College, Baradwar , Shakti , India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 8,
Year - 2025
ABSTRACT:
Euclea racemosa, belongs to family traditionally used for thr treatment of both infectious and noninfectious diseases and also reported that different bioactive compounds responsible for different pharmacological activity. The present study was to evaluate the phytochemical analysis and in vitro antioxidant activities of the crude leaf extracts of E.racemosa on the standard DPPH free radicals and total reducing power. The qualitative phytochemical findings revealed that the both ethyl acetate and ethanolic leaf extracts of E.racemosa shown the presence of secondary metabolites, including alkaloids, flavonoids, tannins and phenolic compounds, glycosides, and saponins. From the current results revealed that chloroform, ethyl acetate and ethanolic leaf extract of E. racemosa showed significant DPPH scavenging activity of 86.18%, 88.93% and 89.63% respectively at 100 µg/ml with IC50 values of 21.71 µg/ml, 24.43 µg/ml, and 23.54 µg/ml respectively. In addition the total reducing power of the tested crude leaf extracts both chloroform (0.837) and ethyl acetate (0.962) leave extracts of showed promising reducing power than other two tested extracts. There for it was concluded that the chloroform and ethyl acetate leave extract of E. racemosa had significant DPPH radical scavenging activity and total ferric reducing power.
Cite this article:
Betelhem Hailu T, Naveen Kumar A.D, Zenebe Teka M, Zenebe Hagos, Teklay Meles G, Gebgrekidan K, Salah Hamza S, Kamalakararao K, Krishna Chaithanya K, Sudhish Rai. Unveiling the Antioxidant Power: Exploring Phytochemical Composition and In vitro Antioxidant Evaluation of Leaf Extract from Euclea racemosa. Research Journal Pharmacy and Technology. 2025;18(8):3641-7. doi: 10.52711/0974-360X.2025.00524
Cite(Electronic):
Betelhem Hailu T, Naveen Kumar A.D, Zenebe Teka M, Zenebe Hagos, Teklay Meles G, Gebgrekidan K, Salah Hamza S, Kamalakararao K, Krishna Chaithanya K, Sudhish Rai. Unveiling the Antioxidant Power: Exploring Phytochemical Composition and In vitro Antioxidant Evaluation of Leaf Extract from Euclea racemosa. Research Journal Pharmacy and Technology. 2025;18(8):3641-7. doi: 10.52711/0974-360X.2025.00524 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-27
REFERENCES:
1. De Almeida, A. J. P. O., de Oliveira, J. C. P. L., da Silva Pontes, L. V., de Souza Júnior, J. F., Gonçalves, T. A. F., Dantas, S. H., de Almeida Feitosa, M. S., Silva, A. O., de Medeiros, I. A. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxidative medicine and cellular longevity. 2022; October: 1-23 1225578. https://doi.org/10.1155/2022/1225578
2. Panday, A., Sahoo, M. K., Osorio, D., and Batra, S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cellular and molecular immunology. 2015; 12(1): 5–23. https://doi.org/10.1038/cmi.2014.89.
3. Akshay R. Yadav, Shrinivas K. Mohite. Antioxidant Activity of Malvastrum coromandelianum Leaf extracts.
4. Research Journal of Topical and Cosmetic Sciences. 2020; 11(2): 59-61. https://10.5958/2321-5844.2020.00010.2
5. Huang, R., Chen, H., Liang, J., Li, Y., Yang, J., Luo, C., Tang, Y., Ding, Y., Liu, X., Yuan, Q., Yu, H., Ye, Y., Xu, W., and Xie, X. Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy. Journal of Cancer. 2021; 12(18): 5543–5561. https://doi.org/10.7150/jca.54699.
6. Md. Khalequeuzzaman, Shakib Al Hasan, Masoumul Haque, Rozina Parul, Mohammad Rezwanur Alam. Evaluation of Antioxidant and Anti-inflamatory Activity of Ethanolic Extract of Glochidion acuminatum Leaves. Asian Journal of Pharmaceutical Research. 2023; 13(2): 87-1.
7. Viola, T. W., Orso, R., Florian, L. F., Garcia, M. G., Gomes, M. G. S., Mardini, E. M., Niederauer, J. P. O., Zaparte, A., Grassi-Oliveira, R. Effects of substance use disorder on oxidative and antioxidative stress markers: A systematic review and meta-analysis. Addiction Biology. 2023; 28(1); e13254. https://doi.org/10.1111/adb.13254.
8. Chandran, R, Abrahamse, H. Identifying Plant-Based Natural Medicine against Oxidative Stress and Neurodegenerative Disorders. Oxidative Medicine and Cellular Longevity, 2020, 8648742. https://doi.org/10.1155/2020/8648742.
9. Preeti Tiwari, Rakesh K. Patel. Estimation of Total Phenolics and Flavonoids and Antioxidant Potential of Ashwagandharishta Prepared by Traditional and Modern Methods. Asian J. Pharm. 2013; Ana. 3(4): Oct. - Dec. 147-152.
10. Krakowska-Sieprawska, A., Kiełbasa, A., Rafińska, K., Ligor, M., and Buszewski, B. Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. Molecules (Basel, Switzerland). 2022; 27(3): 730. https://doi.org/10.3390/molecules27030730.
11. Sanjeeb K. Kar, Prasanna K. Dixit, Uma S. Mishra, Chowdhury M. Hossain. Antioxidant and Anti-inflammatory activity of the Terpenoidal fraction of Ethanolic extract of Byttneria herbacea. Research Journal of Pharmacy and Technology. 2024; 17(4): 1481-5. doi: 10.52711/0974-360X.2024.00234.
12. Weletnsae, T., Tadege, T., Hintsa, K., Hagos, Z., Syam Babu, D., Dogulas Palleti, J., Rajan Bhagyasri, G., Rai, S., Chaithanya K, K.. In vitro Screening of 5-LOX /COX-2 Dual Inhibitors from selected Medicinal plant Maytenus arbutifolia. Research Journal of Pharmacy and Technology. 2024; 17(1): 241-48.
13. Ch. Madhu, J. Swapna, K. Neelima, Monic V. Shah. A Comparative Evaluation of the Antioxidant Activity of Some Medicinal Plants Popularly Used in India. Asian Journal of Research in Pharmaceutical Sciences. 2012; 2(3): 98-100.
14. M. Elayarani, P. Shanmuganathan, P. Muthukumaran. In Vitro Anti-Oxidant Activity of the Various Extracts of Cassia auriculata L. Flower by UV Spectrophotometer. Asian Journal of Pharmacy and Technology. 2011; 1(3): 70-72
15. Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., Suleman, S. Phytochemical Screening and Antimicrobial Activity Evaluation of Selected Medicinal Plants in Ethiopia. Journal of Experimental Pharmacology. 2023; 15 (2): 51–62. https://doi.org/10.2147/JEP.S379805
16. Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., Chang, C. M. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules (Basel, Switzerland). 2022; 27(4): 1326. https://doi.org/10.3390/molecules27041326.
17. Asowata-Ayodele, A. M., Otunola, G. A., Afolayan, A. J. Assessment of the Polyphenolic Content, Free Radical Scavenging, Anti-inflammatory, and Antimicrobial Activities of Acetone and Aqueous Extracts of Lippia javanica (Burm.F.) Spreng. Pharmacognosy Magazine. 2016; 12(Suppl 3): S353–S362. https://doi.org/10.4103/0973-1296.185770.
18. Gebremariam, T., Abula, T., Gebremariam, M. G. Antibacterial and phytochemical screening of root extracts of Euclea racemosa subsp. Schimperi. International Journal of Pharmacognosy. 2015; 2(2): 66-70.
19. Kilonzo, M., Rubanza, C., Richard, U., Sangiwa, G. Antimicrobial activities and phytochemical analysis of extracts from Ormocarpum trichocarpum (Taub.) and Euclea divinorum (Hiern) used as traditional medicine in Tanzania. Tanzania Journal of Health Research. 2019; 21(2): 1-12.
20. Palanisamy C., Selvarajan R., Balogun F., Kanakasabapathy D., Ashafa A. Antioxidant and antimicrobial activities of (6E, 10E)-2, 6, 24-trimethyl pentacosa-2, 6, 10-triene from Euclea crispa leaves. South. African. Journal of Botany. 2019; 124: 311–319. 10.1016/j.sajb.2019.03.019
21. Palanisamy C., Cui B., Zhang H., Trung N., Tran H., Khanh T. Characterization of (2E,6E) 3,7,11trimethyldodecane-2,6,10-trien-1-ol with antioxidant and antimicrobial potentials from Euclea crispa (Thunb.) leaves. International Letters of Natural Sciences. 2020. 80, 51–63. 10.56431/p-v34u92 [CrossRef] [Google Scholar
22. Mekonnen, A., Atlabachew, M, Kassie, B. Investigation of antioxidant and antimicrobial activities of Euclea Schimperi leaf extracts. Chemical and Biological Technologies in Agriculture. 2018; 5, 16. https://doi.org/10.1186/s40538-018-0128.
23. Maroyi A. Review of Ethnomedicinal Uses, Phytochemistry and Pharmacological Properties of Euclea natalensis A.DC. Molecules (Basel, Switzerland), 2017; 22(12): 2128. https://doi.org/10.3390/molecules22122128
24. Palanisamy, C. P., Cui, B., Zhang, H., Jayaraman, S., Rajagopal, P., Veeraraghavan, V. P. (5E, 7E)-4, 5, 6 Trihydroxy-3-(hydroxymethyl) tetrahydro-2H-pyran-2-ylheptadeca-5, 7-dienoate from Euclea crispa (L.) Inhibits Ovarian Cancer Cell Growth by Controlling Apoptotic and Metastatic Signaling Mechanisms. Bioinorganic Chemistry and Applications, 2022. Article ID 4464056, 12 pages, 2022