Author(s):
Vaishnavi P. Patil, Pornima A. Sontakke, Manswi R. Deore, Gunjansing D. Rajput, Pavankumar P. Wankhade, Devendra S. Shirode, Niraj S. Vyawahare
Email(s):
vppatil3032001@gmail.com
DOI:
10.52711/0974-360X.2025.00535
Address:
Vaishnavi P. Patil1*, Pornima A. Sontakke1, Manswi R. Deore1, Gunjansing D. Rajput1, Pavankumar P. Wankhade2, Devendra S. Shirode2, Niraj S. Vyawahare3
1Research Scholar, Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy, Akurdi - 411044, Pune, Maharashtra, India.
2Professor, Department of Pharmacology, Dr. D. Y. Patil College of Pharmacy, Akurdi - 411044, Pune, Maharashtra, India.
3Principal, Dr. D. Y. Patil College of Pharmacy, Akurdi - 411044, Pune, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 8,
Year - 2025
ABSTRACT:
Polyherbalism is an ancient Ayurvedic concept for treating complex diseases. Nowadays, many CNS-associated complications are faced by people worldwide. Ayurvedic principles of polyherbalism were known for their effectiveness. In this study, a brain tonic was prepared as a polyherbal syrup formulation. Polyherbal syrup formulations were designed and evaluated. A total of five plants Zingiber officinale, Piper cubeba, Cinnamomum zeylanicum, Anacyclus pyrethrum, and Terminalia chebula were selected for formulation. These plants have already been used in many animal models for neuroprotective activity. After maceration, hydroalcoholic extracts were prepared and evaluated for phytochemical tests and IC50 values. The formulation was prepared and evaluated for various parameters like physical appearance, pH, density, viscosity, specific gravity, clarity test, and FTIR analysis of active phytoconstituents. After confirmation of quality control parameters, we performed acute oral toxicity (423), according to OECD guidelines. Based on this evaluation, we conclude that this polyherbal syrup formulation will be used in the future for preclinical evaluation of neuroprotection in various animal models to check pharmacological effects.
Cite this article:
Vaishnavi P. Patil, Pornima A. Sontakke, Manswi R. Deore, Gunjansing D. Rajput, Pavankumar P. Wankhade, Devendra S. Shirode, Niraj S. Vyawahare. Formulation, Evaluation and Acute Oral Toxicity Study of Polyherbal Syrup TCZoAP. Research Journal Pharmacy and Technology. 2025;18(8):3715-2. doi: 10.52711/0974-360X.2025.00535
Cite(Electronic):
Vaishnavi P. Patil, Pornima A. Sontakke, Manswi R. Deore, Gunjansing D. Rajput, Pavankumar P. Wankhade, Devendra S. Shirode, Niraj S. Vyawahare. Formulation, Evaluation and Acute Oral Toxicity Study of Polyherbal Syrup TCZoAP. Research Journal Pharmacy and Technology. 2025;18(8):3715-2. doi: 10.52711/0974-360X.2025.00535 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-38
REFERENCES:
1. Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev. 2014; 8(16): 73-80. doi:10.4103/0973-7847.134229
2. Petchi, Rajendran Ramesh et al. Antidiabetic activity of polyherbal formulation in streptozotocin - nicotinamide induced diabetic wistar rats. Journal of Traditional and Complementary Medicine. 2014; 4(2): 108-17. doi:10.4103/2225-4110.126174
3. Parasuraman S et al. Free radical scavenging property and diuretic effect of triglize, a polyherbal formulation in experimental models. Journal of Pharmacology and Pharmacotherapeutics. 2010; 1(1): 38-41. doi:10.4103/0976-500X.64535
4. Aishwarya S. Patil, Mayuri A. Tupe, Devendra S. Shirode. Anti-inflammatory effect of Polyherbal Formulation. Research Journal of Pharmacy and Technology. 2024; 17(6): 2568-2. doi:10.52711/0974-360X.2024.00401
5. Santosh Kumar Mahapatra, Seema Verma. Preparation and Evaluation of Novel Antidiabetic Polyherbal Formulation. Research Journal of Pharmacy and Technology. 2022; 15(7): 3015-9. doi:10.52711/0974-360X.2022.00503
6. Anamika Gautam et al. Protective effect of Polyherbal syrup and tablet against Ethylene glycol induced Urolithiasis in rats. Research Journal of Pharmacy and Technology. 2021; 14(1): 249-253. doi: 10.5958/0974-360X.2021.00044.5
7. Pravin S, Nanthagopal P, Ayyappan T. Development and Evaluation of Polyherbal Formulation for the treatment of Dengue Fever. Research Journal of Pharmacy and Technology. 2022; 15(11): 4981-6. doi: 10.52711/0974-360X.2022.00837
8. Schoenfeld DA, Benatar M. Editorial: We may need large trials to find treatments for neurodegenerative diseases. Clinical Trials. 2019; 16(2): 120-121. doi:10.1177/1740774518820814
9. Gangaraju M et al. A Comprehensive Review on Pathophysiology and Alternative Therapies for Parkinsons Disease. International Neuropsychiatric Disease Journal. 2023; 20(4): 24-35. doi: 10.9734/indj/2023/v20i4408
10. Cree, Bruce A C et al. New drugs for multiple sclerosis: new treatment algorithms. Current Opinion in Neurology. 2022; 35(3): 262-270. doi:10.1097/WCO.0000000000001063
11. Arcusa, Raúl et al. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Frontiers in nutrition. 2022; 9: 809621. doi:10.3389/fnut.2022.809621
12. Mathiyazhagan, Jayasindu, and Gothandam Kodiveri Muthukaliannan. The role of mTOR and oral intervention of combined Zingiber officinale-Terminalia chebula extract in type 2 diabetes rat models. Journal of Food Biochemistry. 2020; 44(7): e13250. doi:10.1111/jfbc.13250
13. Dwita, L P et al. Neuroprotective potential of lignan-rich fraction of Piper cubeba L. by improving antioxidant capacity in the rat's brain. Brazilian journal of biology = Revista brasleira de biologia. 2023; 82: e266573. doi:10.1590/1519-6984.266573
14. Tarbiat S et al. Neuroprotective effects of Cubebin and Hinokinin lignan fractions of Piper cubeba fruit in Alzheimer’s disease in vitro model. Turkish Journal of Biochemistry. 2023; 48(3): 303–10. doi: 10.1515/tjb-2023-0032
15. Khasnavis, Saurabh, and Kalipada Pahan. Cinnamon treatment upregulates neuroprotective proteins Parkin and DJ-1 and protects dopaminergic neurons in a mouse model of Parkinson's disease. Journal of Neuroimmune Pharmacology: the official journal of the Society on NeuroImmune Pharmacology. 2014; 9(4): 569-81. doi:10.1007/s11481-014-9552-2
16. Hidayat, Rachmat et al. The Potential of Cinnamon Extract (Cinnamomum burmanii) as Anti-insomnia Medication through Hypothalamus Pituitary Adrenal Axis Improvement in Rats. Acta medica academica. 2022; 51(2): 79-84. doi:10.5644/ama2006-124.375
17. Adloo M, Bahadori M, Shojaeifard MB. The impact of hydroalcoholic extract of Anacyclus pyrethrum plant on epileptic seizure induced by pentylenetetrazole in male rat. The Egyptian Journal of Neurology Psychiatry and Neurosurgery. 2022; 58(1). https://doi.org/10.1186/s41983-022-00497-3
18. Jawhari, Fatima Zahra et al. Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire: Correlation between Total Phenolic and Flavonoid Contents with Antioxidant and Antimicrobial Activities of Chemically Characterized Extracts. In Plants (Basel, Switzerland). 2021; 10(1):149. doi:10.3390/plants10010149
19. Lin, Kuan et al. Neuroprotective Effect of Polyphenol Extracts from Terminalia chebula Retz. against Cerebral Ischemia-Reperfusion Injury. Molecules (Basel, Switzerland). 2022; 27(19): 6449. doi:10.3390/molecules27196449
20. Lakshmi. K et al. Terminalia chebula Retz improve memory and learning in Alzheimer’s Model: (Experimental Study in Rat). Research Journal of Pharmacy and Technology. 2018; 11(11): 4888-4891. doi: 10.5958/0974-360X.2018.00890.9
21. Mao, Qian-Qian et al. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods (Basel, Switzerland). 2019; 8(6): 185. doi:10.3390/foods8060185
22. Zhang, Feng et al. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation. Biomedicine and pharmacotherapy = Biomedecine and Pharmacotherapie. 2018; 107:1523-1529. doi:10.1016/j.biopha.2018.08.136
23. da Rosa, Naiana et al. 6-Shogaol Exerts a Neuroprotective Factor in Offspring after Maternal Immune Activation in Rats. Developmental Neuroscience. 2022; 44(1): 13-22. doi:10.1159/000519992
24. Upadhyaya, Kumud et al. Protective Effects of Zingerone Against Depression-Like Behavior and Biochemical Changes in Chronic Stressed Rats: Antioxidant Effects. Journal of Medicinal Food. 2022; 25(6): 576-587. doi:10.1089/jmf.2021.K.0141
25. Gaire, Bhakta Prasad et al. Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PloS One. 2025; 10(3): e0120203. doi:10.1371/journal.pone.0120203
26. Ahmad, Z. Ethnobotany and Therapeutic Potential of Kabab Chini (Piper Cubeba). World Journal of Pharmacy and Pharmaceutical Sciences. 2017; 6(8): 2418–2436 doi:10.20959/wjpps20178-9870.
27. Brand-Rubalcava et al. β-Caryophyllene decreases neuroinflammation and exerts neuroprotection of dopaminergic neurons in a model of hemi-parkinsonism through inhibition of the NLRP3 inflammasome. Parkinsonism and Related Disorders. 2023; 117: 105906. doi:10.1016/j.parkreldis.2023.105906
28. Tarbiat Shirin et al. Neuroprotective effects of Cubebin and Hinokinin lignan fractions of Piper cubeba fruit in Alzheimer’s disease in vitro model. Turkish Journal of Biochemistry. 2023; 48(3): 303-310. https://doi.org/10.1515/tjb-2023-0032
29. Eddin, Lujain Bader et al. Limonene, a Monoterpene, Mitigates Rotenone-Induced Dopaminergic Neurodegeneration by Modulating Neuroinflammation, Hippo Signaling and Apoptosis in Rats. International Journal of Molecular Sciences. 2023; 24(6): 5222. doi:10.3390/ijms24065222
30. Pahan, Kalipada. Prospects of Cinnamon in Multiple Sclerosis. Journal of multiple sclerosis. 2015; 2(3): 1000149. doi:10.4172/2376-0389.1000149
31. Said, Mahmoud M, and Marwa M Abd Rabo. Neuroprotective effects of eugenol against aluminium induced toxicity in the rat brain. Arhiv za Higijenu rada i Toksikologiju. 2017; 68(1): 27-37. doi:10.1515/aiht-2017-68-2878
32. Prorok, Tim et al. Cinnamic Acid Protects the Nigrostriatum in a Mouse Model of Parkinson's Disease via Peroxisome Proliferator-Activated Receptorα. Neurochemical research. 2019; 44(4): 751-762. doi:10.1007/s11064-018-02705-0
33. Xu, Qi et al. A-Type Cinnamon Procyanidin Oligomers Protect Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice Through Inhibiting the P38 Mitogen-Activated Protein Kinase/P53/BCL-2 Associated X Protein Signaling Pathway. The Journal of Nutrition. 2020; 150(7): 1731-1737. doi:10.1093/jn/nxaa128
34. Sebastiani Giorgia et al. Therapeutic Effects of Catechins in Less Common Neurological and Neurodegenerative Disorders. Nutrients. 2012; 13(7):2232. doi:10.3390/nu13072232
35. Kalam M. Evaluation of Anticonvulsant Activity of Aqer Qerha (Anacyclus pyrethrum DC.) Root in Experimental Animals. Hippocratic Journal of Unani Medicine. 2015; 10: 1–12 .
36. Sujith K et al. Memory-enhancing activity of Anacyclus pyrethrum in albino Wistar rats. Asian Pacific Journal of Tropical Disease. 2012; 2(4): 307–311. https://doi.org/10.1016/S2222-1808(12)60067-X
37. Debnath, Jiban et al. Anticonvulsant activity of ethanolic extract of fruits of terminalia chebula on experimental animals. International Journal of Drug Development and Research. 2010; 2(4): 764-68 .
38. Elazzouzi, Hanane et al. Phytochemistry, Biological and Pharmacological Activities of the Anacyclus pyrethrum (L.) Lag: A Systematic Review. Plants (Basel, Switzerland). 2022; 11(19): 2578. doi:10.3390/plants11192578
39. Virupanagouda P Patil et al. Evaluation of anti-anxiety activity of anacyclus pyrethrum. International Research Journal of Pharmacy. 2018; 8(12):46–49. doi: 10.7897/2230-8407.0812249.
40. Elazzouzi, Hanane et al. Phytochemistry, Biological and Pharmacological Activities of the Anacyclus pyrethrum (L.) Lag: A Systematic Review. Plants (Basel, Switzerland). 2022;11(19):2578. doi:10.3390/plants11192578
41. Kim, H. J. et al. Neuroprotective Effect of Chebulagic Acid via Autophagy Induction in SH-SY5Y Cells. Biomolecule Therapeutics (Seoul). 2014; 22(4): 275–281. http://dx.doi.org/10.4062/biomolther.2014.068.
42. Song, J. H. et al. Chebulinic acid attenuates glutamate-induced HT22 cell death by inhibiting oxidative stress, calcium influx and MAPKs phosphorylation. Bioorganic and Medicinal Chemistry Letters. 2018; 28(3):249–253. doi: 10.1016/j.bmcl.2017.12.062
43. Mirshekar, M. A. et al. Neuroprotective effects of gallic acid in a rat model of traumatic brain injury: behavioral, electrophysiological, and molecular studies. Iranian Journal of Basic Medical Sciences. 2018; 21(10):1056. doi: 10.22038/IJBMS.2018.29639.7165
44. Shen, Yuh-Chiang et al. Neuroprotective Effect OF Terminalia Chebula Extracts And Ellagic Acid in PC12 CELLS. African Journal of Traditional, Complementary, and Alternative Medicines. 2017; 14(4):22-30. doi: 10.21010/ajtcam.v14i4.3
45. Youn, Kumju et al. Protective Role of Corilagin on Aβ25-35-Induced Neurotoxicity: Suppression of NF-κB Signaling Pathway. Journal of Medicinal Food. 2016; 19(10): 901-911. doi: 10.1089/jmf.2016.3714
46. Sholikhah, E N et al. Acute and Subchronic Oral Toxicity Study of Polyherbal Formulation Containing Allium sativum L., Terminalia bellirica (Gaertn.) Roxb., Curcuma aeruginosa Roxb., and Amomum compactum Sol. ex. Maton in Rats. BioMed Research International. 2020; 2020 8609364. doi: 10.1155/2020/8609364
47. Wissam Zam, Ali Ali, Farah Husein. Extraction of Polyphenols from Oregano and Thyme by Maceration using Glycerine. Research Journal of Pharmacy and Technology. 2020; 13(6): 2699-2702. doi: 10.5958/0974-360X.2020.00480.1
48. P. Parvathy et al. Pharmacognostic, Physicochemical, Phytochemical and Chromatographic Characterization of Vaividanga Choornam, A Siddha Polyherbal Formulation. Research Journal of Pharmacy and Technology. 2024; 17(2): 727-3. doi: 10.52711/0974-360X.2024.00113
49. Jothika R. et al. Evaluation of in vitro Free Radical Scavenging and Antidiabetic Activities of Polyherbal formulations. Research Journal of Pharmacy and Technology. 2022; 15(5): 2100-2. doi: 10.52711/0974-360X.2022.00348
50. Neha Rana, Vijender Singh, Mohd. Ali. Phytochemical Analysis and Assessment of In vitro Antioxidant Potential of Polyherbal Formulation. Research Journal of Pharmacy and Technology. 2023; 16(6):2895-9. doi: 10.52711/0974-360X.2023.00477
51. Bijay Sharma, Arnab Bagchi, Sonam Bhutia, Bapi Ray Sarkar, Prosanta Pal. Formulation and Evaluation of Expectorant activity of Poly Herbal Cough Syrup from Traditional Medicinal Plant extracts of North East India. Research Journal of Pharmacy and Technology. 2022; 15(3): 949-3. doi: 10.52711/0974-360X.2022.00158
52. Gawai, A. A. et al. Formulation and Development of Oral Herbal Liquid Dosage Form With Its Quality Evaluation Parameters. International Journal of Ayurvedic Medicine. 2023; 13(4): 944-51. doi:10.47552/ijam.v13i4.3043.
53. Ahmad, Sohail et al. In Vitro Antimicrobial Bioassays, DPPH Radical Scavenging Activity, and FTIR Spectroscopy Analysis of Heliotropium bacciferum. BioMed Research International. 2016; 2016: 3818945. doi:10.1155/2016/3818945
54. Rajiv, P., A. Deepa, P. Vanathi, and D. Vidhya. Screening for Phytochemicals and FTIR Analysis of Myristica DACTYLOIDS Fruit Extracts. International Journal of Pharmacy and Pharmaceutical Sciences. 2017; 9(1):315-8 doi:10.22159/ijpps.2017v9i1.11053.
55. “Test No. 423: Acute Oral Toxicity - Acute Toxic Class Method.” OECD Guidelines for the Testing of Chemicals, Section 4 : Health Effects | OECD iLibrary. N.p., n.d. Web. <https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001-en>.
56. Suresh, Swathi, and Chitra Vella Pandian. Assessment of oral toxicity and safety profile of cyanidin: acute and subacute studies on anthocyanin. Future Science OA. 2014; 10(1): FSO982. doi:10.2144/fsoa-2023-0322
57. Seema BR et al. Advanced up and down methodology for acute toxicity assessment with reliable LD50 verified by aqueous extract of curly kale using wistar rats. Research Journal of Pharmacy and Technology. 2023; 16(10): 4519-4. doi: 10.52711/0974-360X.2023.00736