Author(s):
Lina Permatasari, Handa Muliasari, Hilkatul Ilmi
Email(s):
handamuliasari@unram.ac.id
DOI:
10.52711/0974-360X.2025.00545
Address:
Lina Permatasari1, Handa Muliasari1*, Hilkatul Ilmi2
1Departement of Pharmaceutical Chemistry, Study Program of Pharmacy, Faculty of Medicine and Health Science, University of Mataram , Mataram, Indonesia.
2Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 8,
Year - 2025
ABSTRACT:
Mangroves are plants that live along the coastline. Sekotong, West Lombok, is one of the regions in Indonesia that has a large area of mangrove forest. Avicennia marina, Rhizopora mucronata, and Sonneratia alba are abundant species in the area. Antioxidant and antimalarial activities and their correlation in these three species have never been explored. Therefore, the research objective was to explore the antioxidant, antimalarial, and total phenolic content (TPC) from ethanol extract, water fraction, n-hexane fraction, and ethyl acetate fraction of Rhizopora mucronata, Avicennia marina, and Sonneratia alba leaves. In addition, the correlation between these parameters was analyzed using Principal Component Analysis (PCA). Each mangrove species was extracted with ethanol (96%) and fractionated using n-hexane and ethyl acetate. The metabolite profile from the extract of the three species of mangrove was analyzed using Gass Chromatography-Mass Spectrometry (GCMS). The antioxidant activities were analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Meanwhile, their antimalarial activity was analyzed using the lactate dehydrogenase (LDH) method. The GCMS results showed the different compounds in the three mangrove species. Only mome inositol and palmitic acid were found in the three mangrove species, but the percentages were different. R. mucronata leaves have the highest antioxidant activity and are classified as very strong (IC50 < 50 ppm). Ethyl acetate fraction of R. mucronata leaves have the highest TPC with a value of 617.12 ± 19.14 mg gallic acid equivalent/gram extract (mg GAE/g). Meanwhile, S. alba leaves revealed the high antimalarial activity than the other samples with % inhibition above 50% at a concentration of 50 ppm, it was classified as very strong. The Principal Component Analysis (PCA) results indicated a positive relationship between antioxidant activity and total phenolic content, while no correlation was found with antimalarial activity. Thus, the antioxidant activity observed in the three mangrove species is influenced by the presence of phenolic compounds.
Cite this article:
Lina Permatasari, Handa Muliasari, Hilkatul Ilmi. Principal Component Analysis (PCA) of Total Phenolic Content, Antioxidant and Antimalarial Activities of Rhizopora mucronata, Avicennia marina, and Sonneratia alba Leaves from Lombok Island. Research Journal Pharmacy and Technology. 2025;18(8):3785-2. doi: 10.52711/0974-360X.2025.00545
Cite(Electronic):
Lina Permatasari, Handa Muliasari, Hilkatul Ilmi. Principal Component Analysis (PCA) of Total Phenolic Content, Antioxidant and Antimalarial Activities of Rhizopora mucronata, Avicennia marina, and Sonneratia alba Leaves from Lombok Island. Research Journal Pharmacy and Technology. 2025;18(8):3785-2. doi: 10.52711/0974-360X.2025.00545 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-48
REFERENCES:
1. Biswas P, Biswas S. Mangrove Forests: Ecology, Management, and Threats. In Life and Land. Springer International Publishing, Cham. 2019; 1st ed: pp. 1–14.
2. Tresiana N, Duadji N, Febryano IG, Zenitha SA. Saving Mangrove Forest Extinction in Urban Areas: Will Government Interventions Help?. International Journal of Sustainable Development and Planning. 2022; Apr 26;17(2):375–384.doi:10.18280/ijsdp.170203
3. Japa L, Santoso D. Analisis Komunitas Mangrove Di Kecamatan Sekotong Lombok Barat NTB. Jurnal Biologi Tropis. 2019 Feb 11; 19(1): 25–33.doi: 10.29303/jbt.v19i1.1001
4. Ananthavalli M, Karpagam S. Antibacterial activity and phytochemical content of Avicennia marina collected from polluted and unpolluted site. Journal of Medicinal Plants Studies. 2017; 5(3): 47–49. doi: 10.22271/plants
5. Baishya S, Banik SK, Choudhury MD, Das Talukdar D, Das Talukdar A. Chapter 11 - Therapeutic potentials of littoral vegetation: an antifungal perspective. In Biotechnological Utilization of Mangrove Resources, Edited by Patra JK, Mishra RR, Thatoi H. Academic Press. 2020; 1st ed: pp. 275–292.
6. Mohammed NS, Srinivasulu A, Chittibabu B, V UMR. Isolation and purification of antibacterial principle from avicennia marina l in methanol. Journal of Pharmacy and Pharmaceutical Sciences. 2015 Jan 7(1); 38–41.
7. Wijaya MD, Indraningrat AAG. Antibacterial Activity of Mangrove Root Extracts from Ngurah Rai Mangrove Forest, Denpasar-Bali. Biology, Medicine, and Natural Product Chemistry. 2021 Oct 21; 10(2): 117–121. doi: 10.14421/biomedich.2021.102.117-12
8. Usman, Erika MAMF, Nurdin M, Kuncoro H. Antidiabetic Activity of leaf extract from three types of Mangrove Originating from Sambera Coastal Region Indonesia. Research Journal of Pharmacy and Technology. 2019 Apr 30;12(4):1707–1712.doi: 10.5958/0974-360X.2019.00284.1
9. Okla MK, Alatar AA, Al-amri SS, Soufan WH, Ahmad A, Abdel-Maksoud MA. Antibacterial and Antifungal Activity of the Extracts of Different Parts of Avicennia marina (Forssk.) Vierh. Plants. 2021 Jan 28;10(2):1-14.doi: 10.3390/plants10020252
10. Tarman K, Safitri D, Setyaningsih I. Endophytic Fungi Isolated from Rhizophora mucronata and Their Antibacterial Activity. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology. 2013 Aug 20; 8(2): 69-76. doi:10.15578/squalen.v8i2.88
11. Zamani MZ, Prajitno A, Fadjar M. Morphological Characteristics of Bioactive Compounds on Api-Api Mangrove Leaves Extract (Avicennia marina) Based on Leaves Age. Research Journal of Life Science. 2019 Dec 7; 6(3): 184–192. doi:10.21776/ub.rjls.2019.006.03.4
12. Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y. The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. BioMed Research International. 2019 May 8(5); 2019: 1–11. doi:10.1155/2019/9732325
13. Builders M, Alemika T, Aguiyi J. Antimalarial Activity and Isolation of Phenolic Compound from Parkia biglobosa. IOSR Journal of Pharmacy and Biological Sciences. 2014; 9(3): 78–85. doi:10.9790/3008-09347885
14. Uttara J, Mohini U. Evaluation of Antioxidant Activity of Aqueous Extract Bark of Ficus glomerata. Research Journal of Pharmacy and Technology. 2008; 1(4): 537–538
15. Rajendran R, Hemachander R, Ezhilarasan T, Keerthana C, Saroja DL, Saichand KV, et al. Phytochemical Analysis and In-Vitro Antioxidant Activity of Mimosa pudica Lin., Leaves. Research Journal of Pharmacy and Technology. 2010; 3(2): 551–555.
16. Francis P, Sr S. Antimalarial Potential of Isolated Flavonoids-A Review. Research Journal of Pharmacy and Technology. 2017; 10(11): 4057–4062.
17. Gomes ARQ, Cunha N, Varela ELP, Brígido HPC, Vale VV, Dolabela MF, et al. Oxidative Stress in Malaria: Potential Benefits of Antioxidant Therapy. International Journal of Molecular Sciences. 2022 May 25; 23(11): 1-26. doi:10.3390/ijms23115949
18. Rao UM. Hytochemical Screening, Total Flavonoid And Phenolic Content Assays Of Various Solvent Extracts Of Tepal Of Musa paradisiaca. Malaysian Journal of Analytical Science. 2016; Oct 11; 20(5): 1181–1190. doi: 10.17576/mjas-2016-2005-25
19. Jairaman C, Yacoob SAM, Venkataraman A. Screening of Phytochemical and Antioxidant Capacity of Avicennia marina Leaf Extract From Backwaters of Muthukadu Lake, Tamil Nadu. Journal of Research and Analytical Reviews. 2019; 6(2): 27–32. doi:10.1016/j.heliyon.2019.e03108
20. Manongko PS, Sangi MS, Momuat LI. Uji Senyawa Fitokimia dan Aktivitas Antioksidan Tanaman Patah Tulang (Euphorbia tirucalli L.). Jurnal MIPA. 2020; 9(2): 64–69. doi:10.35799/jmuo.9.2.2020.28725
21. Hossain MA, AL-Raqmi KAS, AL-Mijizy ZH, Weli AM, Al-Riyami Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pacific Journal of Tropical Biomedicine. 2013; 3(9): 705–710. doi:10.1016/S2221-1691(13)60142-2
22. Kancherla N, Dhakshinamoothi A, Chitra K, Komaram RB. Preliminary Analysis of Phytoconstituents and Evaluation of Anthelminthic Property of Cayratia auriculata (In Vitro). Mædica. 2019; 14(4): 350–356. doi:10.26574/maedica.2019.14.4.350
23. Sharma T, Pandey B, Shrestha B, Koju G, Thusa R, Karki N. Phytochemical Screening of Medicinal Plants and Study of the Effect of Phytoconstituents in Seed Germination. Tribhuvan University Journal. 2020; Dec 31; 35(1): 1–11. doi:10.3126/tuj.v35i2.36183
24. Permatasari L, Riyanto S, Rohman A. Baccaurea racemosa (Reinw. ex Blume) Müll. Arg. pulp: a potential naturalantioxidant. Food Research Journal. 2019; Jun 9; 3(6): 713–9. doi:10.26656/fr.2017.3(6).165
25. Li Y xin, Zhang C, Pan S, Chen L, Liu M, Yang K, et al. Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. LWT-Food Science and Technology. 2020; Jan; 117(2020): 1-9. doi:10.1016/j.lwt.2019.108644
26. Wijayanti M, Ilmi H, Kemalahayati E, Tumewu L, Wardana FY, Suciati, et al. In vitro antimalarial activity of Garcinia parvifolia Miq. Stem extracts and fractions on Plasmodium falciparum lactate dehydrogenase (LDH) assay. Journal of Basic and Clinical Physiology and Pharmacology. 2021; 32(4): 839–844. doi: 10.1515/jbcpp-2020-0414
27. Sensharma P, Anbarasu K, Jayanthi S. In silico Identification of Novel Inhibitors against Plasmodium falciparum Triosephosphate Isomerase from Anti-Folate Agents. Research Journal of Pharmacy and Technology. 2018; 11(8): 3367–3370. doi: 10.5958/0974-360X.2018.00619.4
28. Oladeji O, Abraham O, Oloke J. Phytochemical screening and antimicrobial investigation of Moringa oleifera leaf extracts. African Journal of Science, Technology, Innovation and Development. 2019; 12: 1–6. doi: 10.1080/20421338.2019.1589082
29. Laryea MK, Sheringham Borquaye L. Antimalarial, Antioxidant, and Toxicological Evaluation of Extracts of Celtis africana, Grosseria vignei, Physalis micrantha, and Stachytarpheta angustifolia. Biochemistry Research International. 2021; Jun 22; 2021: 1-10. doi:10.1155/2021/9971857
30. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants. 2019; 11; 8(4): 96-107. doi: 10.3390/plants8040096
31. Hidayati AR, Widyawaruyanti A, Ilmi H, Tanjung M, Widiandani T, Siswandono S S, et al. Antimalarial Activity of Flavonoid Compound Isolated from Leaves of Artocarpus altilis. Pharmacognosy Journal. 2020; 12(4): 835–842. doi:10.5530/pj.2020.12.120
32. Nafiu MO, Adewuyi AI, Abdulsalam TA, Ashafa AOT. Antimalarial activity and biochemical effects of saponin-rich extract of Dianthus basuticus Burtt Davy in Plasmodium berghei-infected mice. Advances in Traditional Medicine. 2022; 1; 22(3): 519–529. doi: 10.1007/s13596-021-00571-w
33. Sulistiarini R, Soemardji AA, Elfahmi, Iwo MI, Puspitasari DJ, Prabandari EE, et al. Antiplasmodial Activity and Malate Quinone Oxidoreductase Inhibitor of Steroid Isolated from Fibraurea tinctoria. Rasayan Journal of Chemistry. 2022; 15(01): 377–386. doi:10.31788/RJC.2022.1516096
34. Rocha e Silva LF, Ramalhete C, Nogueira KL, Mulhovo S, Ferreira MJU, Pohlit AM. In vivo evaluation of isolated triterpenes and semi-synthetic derivatives as antimalarial agents. European Journal of Medicinal Chemistry. 2015; Sep 18; 102: 398–402. doi: 10.1016/j.ejmech.2015.08.022
35. Wardani AK, Wahid AR, Rosa NS. In Vitro Antimalarial Activity of Ashitaba Root Extracts (Angelica keiskei K.). Research Journal of Pharmacy and Technology. 2020; 13(8): 3771–3776. doi: 10.5958/0974-360X.2020.00667.8
36. Wardani AK, Safwan, Hapsari NP, Hendriyani I, Ridwansyah MT, Wahid AR. Antimalarial Activity of Ethyl Acetate and n-Hexane Fractions of Ashitaba Leaves (Angelica keiskei K.). Research Journal of Pharmacy and Technology. 2023; 31; 16(3): 1314–1318. doi: 10.52711/0974-360X.2023.00216
37. Al-Ansi Z, Masaoud M, Hussein K, Moharram B, Al-Madhagi WM. Antibacterial and Antioxidant Activities of Triterpenoids Isolated from Endemic Euphorbia arbuscula Stem Latex. Advances in Pharmacological and Pharmaceutical Sciences. 2024; 2024(1): 1-9. doi: 10.1155/2024/8273789
38. Das L, Bhaumik E, Raychaudhuri U, Chakraborty R. Role of nutraceuticals in human health. Journal of Food Science and Technology. 2012 Apr 1; 49(2): 173–183. doi: 10.1007/s13197-011-0269-4
39. Lutgen. Malaria World. The strong prophylactic and antimalarial properties of polyunsaturated fatty acids. 2020 [cited 2024 Jul 4]. Available from: https://www.malariaworld.org/blogs/strong-prophylactic-and-antimalarial-properties-polyunsaturated-fatty-acids.
40. Mitra S, Anand U, Sanyal R, Jha NK, Behl T, Mundhra A, et al. Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases. B Biomedicine and Pharmacotherapy. 2022; Jan; 145(2022): 1-10. doi: 10.1016/j.biopha.2021.112378
41. Mett J, Müller U. The medium-chain fatty acid decanoic acid reduces oxidative stress levels in neuroblastoma cells. Scientific Reports. 2021; Mar 17; 11(1): 1-13. doi:10.1038/s41598-021-85523-9
42. Hamsidi R, Wahyuni, Fristiohady A, Malaka MH, Sahidin I, Ekasari W, et al. Steroid Compounds Isolation from Carthamus tinctorius Linn as Antimalarial. Research Journal of Pharmacy and Technology. 2021; Oct 31; 14(10): 5297–5304. doi: 10.52711/0974-360X.2021.00924
43. Wei SD, Zhou HC, Lin YM. Antioxidant Activities of Extract and Fractions from the Hypocotyls of the Mangrove Plant Kandelia candel. International Journal of Molecular Sciences. 2010; Oct; 11(10): 4080–4093. doi: 10.3390/ijms11104080
44. Burri SCM, Ekholm A, Håkansson Å, Tornberg E, Rumpunen K. Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used. Journal of Functional Foods. 2017; Nov; 38(2017): 119–127. doi: 10.1016/j.jff.2017.09.003
45. Ezealigo US, Joshua PE, Ononiwu CP, Agbo MO, Asomadu RO, Ogugua VN. Total Phenolic and Flavonoid Content and In vitro Antioxidant Activity of Methanol Extract and Solvent Fractions of Desmodium ramosissimum G. Don. Medical Sciences Forum. 2020; 2(1): 1-6. doi: 10.3390/CAHD2020-08594
46. Venkatesan T, Choi YW, Kim YK. Impact of Different Extraction Solvents on Phenolic Content and Antioxidant Potential of Pinus densiflora Bark Extract. BioMed Research International. 2019; Jul; 29: 1-14. doi:10.1155/2019/3520675
47. González-Ocampo HA, Martínez-Álvarez IG, Jaramillo-Flores ME, Luna-González A. Comparison of Phenolic and Flavonoid Content and Antioxidant and Chelating Activities of Rhizophora mangle in Different Anthropogenically-Polluted Coastal Lagoons. Frontiers in Marine Science. 2022; April; 9: 1-12. doi: 0.3389/fmars.2022.791748
48. Hacke ACM, Marques JA, Vellosa JCR, Boligon AA, Silva FD da, Souza D de, et al. Ethyl acetate fraction of Cymbopogon citratus as a potential source of antioxidant compounds. New Journal of Chemistry. 2018; Feb 26; 42(5): 3642–3652. doi: 10.1039/C7NJ04352J
49. lias J, M.g R, N.p A, Sunny S, N J. Free Radical Scavenging Activity and Phytochemical Profiling of Acalypha indica Linn. Research Journal of Pharmacy and Technology. 2010; 3(4): 1231–1234.
50. du Preez-Bruwer I, Mumbengegwi DR, Louw S. In vitro antimalarial properties and chemical composition of Diospyros chamaethamnus extracts. South African Journal of Botany. 2022; Sep 1; 149: 290–296. doi: 10.1016/j.sajb.2022.06.006
51. Ravikumar S, Inbaneson SJ, Suganthi P, Venkatesan M, Ramu A. Mangrove plants as a source of lead compounds for the development of new antiplasmodial drugs from South East coast of India. Parasitology Research. 2011; Jun 1; 108(6): 1405–1411. doi: 108(6): 1405–1411
52. Ravikumar S, Jacob Inbaneson S, Suganthi P, Gnanadesigan M. In vitro antiplasmodial activity of ethanolic extracts of mangrove plants from South East coast of India against chloroquine-sensitive Plasmodium falciparum. Parasitology Research. 2011; Apr; 108(4): 873–878. doi: 10.1007/s00436-010-2128-z
53. Fordjour PA, Adjimani JP, Asare B, Duah-Quashie NO, Quashie NB. Anti-malarial Activity Of Phenolic Acids is Structurally Related. 2020. doi: 10.21203/rs.3.rs-21702/v1 Available on https://www.researchsquare.com/article/rs-21702/v1
54. Hermanto F, Subarnas A, Sutjiatmo AB, Berbudi A. Apigenin: Review of Mechanisms of Action as Antimalarial. Research Journal of Pharmacy and Technology. 2022; 15(1): 458–466. doi:10.52711/0974-360X.2022.00075
55. Keita S, Wele M, cisse C, Diarra N, Kirkman L, Baba-Moussa L. Antibacterial and Antiplasmodial Activities of Tannins Extracted from Zizyphus mauritiana in Mali. International Journal of Biochemistry Research and Review. 2018; 20; 24: 1–8. doi: 10.9734/IJBCRR/2018/45335