Author(s): Wardiyah, Mahdi Jufri, Sutriyo, Abdul Mun’im

Email(s): mahdi.jufri@farmasi.ui.ac.id

DOI: 10.52711/0974-360X.2025.00548   

Address: Wardiyah1,3, Mahdi Jufri2*, Sutriyo2, Abdul Mun’im2
1Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia.
2Faculty of Pharmacy, Universitas Indonesia, Kampus UI, Depok, West Java 16424, Indonesia.
3Pharmacy Department, Poltekkes Kemenkes Jakarta II, Jln. Hang Jebat III/F3 Kebayoran Baru, Jakarta, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 8,     Year - 2025


ABSTRACT:
The pharmaceutical and nutraceutical fields are limited in their use of asiaticoside (AS) due to its poor solubility in water. The study used a spray drying technique to design an AS dry nanoemulsion with drug-releasing properties improvement. A combination of high-speed homogenization and ultrasonication methods prepared nanoemulsion. The nanoemulsion formulation containing virgin coconut oil or VCO (13.55%, w/w) as oil phase, sucrose ester (SE) with HLB 3 (2.5%, w/w) as surfactant, and sodium caseinate (SC) (2%, w/w) as co-surfactant. Nanoemulsion formulation followed by spray drying was carried out to improve the physical and chemical characteristics of the product. AS shows the highest solubility in methanol (> 30mg/mL), while the solubility of AS in water is 0.297mg/mL. The in vitro release test of pure AS and dry nanoemulsion in two different media shows significant differences. Compared to pure AS and its physical mixture, the cumulative dissolved AS percentage in dry nanoemulsion is greater, at 51.48% in 0.1 N HCl medium pH 1.2 and 48.72% in phosphate buffer saline (PBS) medium pH 6.8. The nanoparticle morphology of the dried nanoemulsion is spherical with a rough surface. The diffractogram of the dry nanoemulsion shows that AS changed from a crystalline state to an amorphous state. The thermogram of the dried nanoemulsion shows a loss of crystallinity of the AS. The dry nanoemulsion formulation demonstrates superior drug release characteristics compared to the physical mixture and pure form due to its smaller particle size. This enhanced dissolution leads to greater solute availability, potentially resulting in higher oral absorption and bioavailability of AS.


Cite this article:
Wardiyah, Mahdi Jufri, Sutriyo, Abdul Mun’im. Characterization and In vitro Release Testing of Asiaticoside Dry Nanoemulsion prepared by Spray Drying. Research Journal Pharmacy and Technology. 2025;18(8):3807-6. doi: 10.52711/0974-360X.2025.00548

Cite(Electronic):
Wardiyah, Mahdi Jufri, Sutriyo, Abdul Mun’im. Characterization and In vitro Release Testing of Asiaticoside Dry Nanoemulsion prepared by Spray Drying. Research Journal Pharmacy and Technology. 2025;18(8):3807-6. doi: 10.52711/0974-360X.2025.00548   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-51


REFERENCES:
1.    Kunjumon R, Johnson AJ, Baby S. Centella asiatica: Secondary metabolites, biological activities and biomass sources. Phytomedicine Plus. 2022; 2(1): 1-22. doi:10.1016/j.phyplu.2021.100176
2.    Lili Legiawati, Fadilah Fadilah, Kusmarinah Bramono, Aditya Indra Pratama. In Silico Study of Centella asiatica Derivatives as Antioxidant: Enhancer of Superoxide Dismutase and Glutathione Peroxidase Activity. Research J Pharm and Tech. 2023; 16(1): 399-403. doi:10.52711/0974-360X.2023.00068
3.    Narisepalli S, Salunkhe SA, Chitkara D, Mittal A. Asiaticoside polymeric nanoparticles for effective diabetic wound healing through increased collagen biosynthesis: In-vitro and in-vivo evaluation. Int J Pharm. 2023; 631. doi:10.1016/j.ijpharm.2022.122508
4.    Wang J, Ma C, Guo C, Yuan R, Zhan X. CTG-loaded liposomes as an approach for improving the intestinal absorption of asiaticoside in Centella Total Glucosides. Int J Pharm. 2016; 509(1-2): 296-304. doi:10.1016/j.ijpharm.2016.05.044
5.    Soe HMSH, Chamni S, Mahalapbutr P, Kongtaworn N, Rungrotmongkol T, Jansook P. The investigation of binary and ternary sulfobutylether-β-cyclodextrin inclusion complexes with asiaticoside in solution and in solid state. Carbohydr Res. 2020; 498. doi:10.1016/j.carres.2020.108190
6.    Wannasarit S, Mahattanadul S, Issarachot O, Puttarak P, Wiwattanapatapee R. Raft-forming gastro-retentive formulations based on Centella asiatica extract-solid dispersions for gastric ulcer treatment. European Journal of Pharmaceutical Sciences. 2020;143. doi:10.1016/j.ejps.2019.105204
7.    Koroleva M, Nagovitsina T, Yurtov E. Nanoemulsions stabilized by non-ionic surfactants: Stability and degradation mechanisms. Physical Chemistry Chemical Physics. 2018; 20(15): 10369-10377. doi:10.1039/c7cp07626f
8.    Shubham Tripathi, Umesh kumar Sahu, JyotsanaMeshram, et al. Formulation and characterization of Virgin Coconut Oil Emulsion (VCOE) for treatment of Alzheimer’s disease. Research Journal of Pharmaceutical Dosage Forms and Technology. 2018; 10(2): 49-54. doi:10.5958/0975-4377.2018.00009.5
9.    Dahliatul Qosimah, Ma. Asuncion, G.B Aulanni’am, A. Agri K.A, Indah A.A. Effect of Citrus acidity on profile of fatty acid in Virgin Coconut Oil (VCO). Research J Pharm and Tech. 2020; 13(2): 791-794. doi:10.5958/0974-360X.2020.00149.3
10.    Ghani NAA, Channip AA, Chok Hwee Hwa P, Ja’afar F, Yasin HM, Usman A. Physicochemical properties, antioxidant capacities, and metal contents of virgin coconut oil produced by wet and dry processes. Food Sci Nutr. 2018; 6(5): 1298-1306. doi:10.1002/fsn3.671
11.    Liao Y, Zhong L, Liu L, et al. Comparison of surfactants at solubilizing, forming and stabilizing nanoemulsion of hesperidin. J Food Eng. 2020; 281. doi:10.1016/j.jfoodeng.2020.110000
12.    Iqbal R, Ahmed S, Jain GK, Vohora D. Design and development of letrozole nanoemulsion: A comparative evaluation of brain targeted nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int J Pharm. 2019; 565: 20-32. doi:10.1016/j.ijpharm.2019.04.076
13.    Suryani, Muhamad Handoyo Sahumena, Sry Yusti Mabilla, et al. Preparation and Evaluation of Physical Characteristics of Vitamin E Nanoemulsion using virgin coconut Oil (VCO) and olive oil as oil phase with variation Concentration of tween 80 Surfactant. Research J Pharm and Tech. 2020; 13(7): 3232-3236. doi:10.5958/0974-360X.2020.00572.7
14.    Ariyaprakai S, Hu X, Tran MT. Spontaneous Formation of Flavor Oil Emulsions by Using Sucrose Esters and Emulsion Stability Study. Food Biophys. 2019; 14(1): 41-48. doi:10.1007/s11483-018-9555-2
15.    Klang V, Matsko N, Raupach K, El-Hagin N, Valenta C. Development of sucrose stearate-based nanoemulsions and optimisation through γ-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics. 2011; 79(1): 58-67. doi:10.1016/j.ejpb.2011.01.010
16.    Savić S, Tamburić S, Savić MM. From conventional towards new natural surfactants in drug delivery systems design: Current status and perspectives. Expert Opin Drug Deliv. 2010; 7(3): 353-369. doi:10.1517/17425240903535833
17.    Szuts A, Szabó-Révész P. Sucrose esters as natural surfactants in drug delivery systems - A mini-review. Int J Pharm. 2012; 433(1-2): 1-9. doi:10.1016/j.ijpharm.2012.04.076
18.    Liu Y, Wei ZC, Deng YY, et al. Comparison of the effects of different food-grade emulsifiers on the properties and stability of a casein-maltodextrin-soybean oil compound emulsion. Molecules. 2020; 25(3). doi:10.3390/molecules25030458
19.    Leong WF, Che Man YB, Lai OM, Long K, Nakajima M, Tan CP. Effect of sucrose fatty acid esters on the particle characteristics and flow properties of phytosterol nanodispersions. J Food Eng. 2011; 104(1): 63-69. doi:10.1016/j.jfoodeng.2010.11.028
20.    Mao L, Xu D, Yang J, Yuan F, Gao Y, Zhao J. Effects of Small and Large Molecule Emulsifiers on the Characteristics of b-Carotene Nanoemulsions Prepared by High Pressure Homogenization. Food Technol Biotechnol. 2009; 47(3): 336-342.
21.    Perugini L, Cinelli G, Cofelice M, Ceglie A, Lopez F, Cuomo F. Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH. Colloids Surf B Biointerfaces. 2018; 168: 163-168. doi:10.1016/j.colsurfb.2018.02.003
22.    Jang DJ, Jeong EJ, Lee HM, Kim BC, Lim SJ, Kim CK. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. European Journal of Pharmaceutical Sciences. 2006; 28(5): 405-411. doi:10.1016/j.ejps.2006.04.013
23.    Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release. 2017;252:28-49. doi:10.1016/j.jconrel.2017.03.008
24.    Jang DJ, Kim ST, Oh E, Lee K. Enhanced oral bioavailability and antiasthmatic efficacy of curcumin using redispersible dry emulsion. In: Bio-Medical Materials and Engineering. Vol 24.; 2014: 917-930. doi:10.3233/BME-130886
25.    Dollo G, Le Corre P, Guérin A, Chevanne F, Burgot JL, Leverge R. Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. European Journal of Pharmaceutical Sciences. 2003; 19(4): 273-280. doi:10.1016/S0928-0987(03)00134-9
26.    Pongsamart K, Kleinebudde P, Puttipipatkhachorn S. Preparation of fenofibrate dry emulsion and dry suspension using octenyl succinic anhydride starch as emulsifying agent and solid carrier. Int J Pharm. 2016; 498(1-2): 347-354. doi:10.1016/j.ijpharm.2015.12.041
27.    El-Messery TM, Altuntas U, Altin G, Özçelik B. The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food Hydrocoll. 2020; 106. doi:10.1016/j.foodhyd.2020.105890
28.    Pohlen M, Pirker L, Luštrik M, Dreu R. A redispersible dry emulsion system with simvastatin prepared via fluid bed layering as a means of dissolution enhancement of a lipophilic drug. Int J Pharm. 2018; 549(1-2): 325-334. doi:10.1016/j.ijpharm.2018.07.064
29.    Tristiana Erawati, Dewi Melani Hariyadi, Noorma Rosita, Tutiek Purwanti. The Anti-inflammatory Activity of p-methoxycinnamic acid (PMCA) in the Nanostructured lipid carrier (NLC) system using combinations of solid lipid, beeswax-oleum cacao and liquid lipid, Virgin Coconut oil (VCO). Research J Pharm and Tech. 2019; 12(8): 3619-3625. doi:10.5958/0974-360X.2019.00617.6
30.    Steiner D, Schumann L V., Bunjes H. Processing of Lipid Nanodispersions into Solid Powders by Spray Drying. Pharmaceutics. 2022; 14(11): 2464. doi:10.3390/pharmaceutics14112464
31.    Pradana AT, Ritthidej GC. Spray Drying of Asiatic Acid-Palm Oil in Maltodextrin: Improving the Nanoemulsion Characteristics. International Journal of Nanoscience and Nanotechnology. 2023; 19(1): 21-33. doi:10.22034/ijnn.2023.554021.2206
32.    Wardiyah, Jufri M, Sutriyo, Munim A, Hanif Zulfakar M. Development and Optimization of Asiaticoside Nanoemulsion Formulation by Box-Behnken Design. Farmacia. 2024;72(6).
33.    Pradana AT, Ritthidej GC, Limprasutr V, Wongtayan A, Lipipun V, Iksen. Antihypertensive activity of spray-dried nanoemulsion containing Asiatic acid-Palm oil in high salt diet-fed rats. Pharmacia. 2024; 71: 1-10. doi:10.3897/pharmacia.71.e115091
34.    Chaturvedi S, Garg A. Development and optimization of nanoemulsion containing exemestane using box-behnken design. J Drug Deliv Sci Technol. 2023; 80. doi:10.1016/j.jddst.2023.104151
35.    Kusumorini N, Nugroho AK, Pramono S, Martien R. Spray-dried self-nanoemulsifying drug delivery systems as carriers for the oral delivery of piperine: Characterization and in vitro evaluation. J Appl Pharm Sci. 2022; 12(9): 43-57. doi:10.7324/JAPS.2022.120906
36.    Monton C, Luprasong C, Suksaeree J, Songsak T. Validated high performance liquid chromatography for simultaneous determination of stability of madecassoside and asiaticoside in film forming polymeric dispersions. Revista Brasileira de Farmacognosia. 2018; 28(3): 289-293. doi:10.1016/j.bjp.2018.04.003
37.    Ajay Kumar Meena, P. Rekha, K. N. Swathi, et al. Quantitative Estimation of Variability in Content of Asiaticoside in Centella asiatica Linn Collected from Different Geographical Regions of India by HPLC. Res J Pharm Technol. 2023; 16(12): 6045-6049. doi:10.52711/0974-360X.2023.00981
38.    Ali A, Chiang YW, Santos RM. X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals. 2022; 12(2). doi:10.3390/min12020205
39.    Bunaciu AA, Udriştioiu E gabriela, Aboul-Enein HY. X-Ray Diffraction: Instrumentation and Applications. Crit Rev Anal Chem. 2015; 45(4): 289-299. doi:10.1080/10408347.2014.949616
40.    Kv K, Sr A, Pr Y, Ry P, Vu B. Differential Scanning Calorimetry: A Review. Research and Reviews: Journal of Pharmaceutical Analysis. 2014; 3(3): 11-22.
41.    Sansone F, Mencherini T, Picerno P, D’Amore M, Aquino RP, Lauro MR. Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. J Food Eng. 2011; 105(3): 468-476. doi:10.1016/j.jfoodeng.2011.03.004
42.    Manjunath Kopparam, Suresh V Kulkarni, Shivu Sn. Development, Characterization and In vitro Evaluation of Donepezil solid Lipid Nanoparticles. Research J Pharm and Tech. 2020; 13(7): 3113-3121. doi:10.5958/0974-360X.2020.00551.X
43.    Wannasarit S, Puttarak P, Kaewkroek K, Wiwattanapatapee R. Strategies for Improving Healing of the Gastric Epithelium Using Oral Solid Dispersions Loaded with Pentacyclic Triterpene–Rich Centella Extract. AAPS PharmSciTech. 2019; 20(7). doi:10.1208/s12249-019-1488-7
44.    Bai X, Li C, Yu L, et al. Development and characterization of soybean oil microcapsules employing kafirin and sodium caseinate as wall materials. LWT. 2019; 111: 235-241. doi:10.1016/j.lwt.2019.05.032
45.    Elnaggar YSR, El-Massik MA, Abdallah OY, Ebian AER. Maltodextrin: A novel excipient used in sugar-based orally disintegrating tablets and phase transition process. AAPS PharmSciTech. 2010; 11(2): 645-651. doi:10.1208/s12249-010-9423-y
46.    Bhadale RS, Londhe VY. Paliperidone Palmitate-Loaded Zein-Maltodextrin Nanocomplex: Fabrication, Characterization, and In Vitro Release. J Pharm Innov. 2023; 18(3): 1253-1263. doi:10.1007/s12247-023-09717-6
47.    Namviriyachote N, Muangman P, Chinaroonchai K, Chuntrasakul C, Ritthidej GC. Polyurethane-biomacromolecule combined foam dressing containing asiaticoside: fabrication, characterization and clinical efficacy for traumatic dermal wound treatment. Int J Biol Macromol. 2020; 143: 510-520. doi:10.1016/j.ijbiomac.2019.10.166
48.    Kumara Swamy S, Ramesh Alli. Preparation, Characterization and Optimization of Irbesartan Loaded Solid Lipid Nanoparticles for Oral Delivery. Asian Journal of Pharmacy and Technology. 2021; 11(2): 97-4. doi:10.52711/2231-5713.2021.00016
49.    Aashish Kumar, Ravinder Verma, Kunwar Pal, et al. Quality by design approach for developing Emulgel of Diclofenac with central composite Design and Evaluation using in vitro release testing. Res J Pharm Technol. 2022; 15(7): 3260-3266. doi:10.52711/0974-360X.2022.00547
50.    Rao MRP, Aghav SS. Spray-dried redispersible emulsion to improve oral bioavailability of itraconazole. J Surfactants Deterg. 2014; 17(4): 807-817. doi:10.1007/s11743-013-1538-1
51.    Jameel Ahmed Mulla, Sarasija Suresh, Imtiyaz Ahmed Khazi. Formulation, Characterization and in vitro Evaluation of Methotrexate Solid Lipid Nanoparticles. Research J Pharm and Tech. 2009; 2(4): 685-689. Accessed September 1, 2024. www.rjptonline.org



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available