Author(s): Elly Munadziroh, Yassir Ahmad Azzaim, Intan Nirwana, Nurazreena Ahmad, Octarina

Email(s): elly-m@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2025.00556   

Address: Elly Munadziroh1*, Yassir Ahmad Azzaim1,2, Intan Nirwana1, Nurazreena Ahmad3, Octarina4
1Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Magister Program, Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
4Department of Dental Material, Faculty of Dentistry, Universitas Trisakti, Jakarta, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 8,     Year - 2025


ABSTRACT:
Background: Socket preservation can be done by adding biomaterials. Bovine Amniotic Membrane (BAM) is an alternative biomaterial that can be used for socket preservation. However, BAM is easily degraded due to its low mechanical properties. Because of this, BAM material can be combined with materials containing calcium and phosphate so that biodegradation can be controlled. Carbonate Hydroxyapatite (CHA) is a calcium phosphate bone substitute biomaterial that is biocompatible, bioactive and osteoconductive. Until now there has never been any research combining BAM-CHA into a bio-composite material. Objective: This study aims to analyze the BAM-CHA bio-composite including functional groups, pore size, porosity percentage, and Ca/P ratio as a candidate material for alveolar bone sockets preservation. Materials and methods: BAM-CHA bio-composites with ratios of 30:70, 35:65, and 40:60 (w/w) were made using the method with Freeze-drying which was then cut into sizes of 0.5 x 0.5 cm. The samples were analyzed to functional group analysis using the FTIR method, pore size analysis using the SEM method, porosity percentage analysis using the liquid displacement method, and Ca/P ratio analysis using the EDX method. Results: BAM-CHA bio-composite has Amide A, B, I, II, III, and PO43-, CO32-, OH- functional groups. BAM-CHA 30:70 bio-composite has an average pore size of 105.0684 µm and the largest pore size of 203,063 µm. BAM-CHA 30:70 bio-composite has a porosity percentage of 82.40 ± 4.47%. BAM-CHA 30:70 bio-composite has a Ca/P ratio of 1.92 which is close to the bone Ca/P ratio criteria. Conclusion: BAM-CHA 30:70 bio-composite has characteristics including functional groups, pore size, porosity percentage, and Ca/P ratio which are most suitable as a candidate material for alveolar bone socket preservation.


Cite this article:
Elly Munadziroh, Yassir Ahmad Azzaim, Intan Nirwana, Nurazreena Ahmad, Octarina. Characteristics Analysis of Bovine Amniotic Membrane Carbonate Hydroxyapatite Bio-composite as a Candidate Material for Alveolar Bone Socket Preservation. Research Journal Pharmacy and Technology. 2025;18(8):3871-9. doi: 10.52711/0974-360X.2025.00556

Cite(Electronic):
Elly Munadziroh, Yassir Ahmad Azzaim, Intan Nirwana, Nurazreena Ahmad, Octarina. Characteristics Analysis of Bovine Amniotic Membrane Carbonate Hydroxyapatite Bio-composite as a Candidate Material for Alveolar Bone Socket Preservation. Research Journal Pharmacy and Technology. 2025;18(8):3871-9. doi: 10.52711/0974-360X.2025.00556   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-59


REFERENCES:
1.    Puspitaningrum MS. Mappananrang RA. Nugraha AP. Core-Shell Nanoparticles Epigallocatechin-3-Gallate and Chitosan/ Hyaluronic-Acid as a Socket Preservation for Dental Implant. Int J Pharm Res [Internet]. 2021; 13(1): 544. Available from: http://www.ijpronline.com/ViewArticleDetail.aspx?ID=19287
2.    Hamed MT. Mously HA. Investigating the Causes and Effects of Alveolar Bone Loss and the Impact of Restoration Types ; A Systematic Review Analysis Hamed and Mously. 2019; 8(4): 60–70. 
3.    Ari MDA. Kresnoadi U. Azhar IS. Sari N. Riawan W. Alveolar Bone Formation Enhancement Induced by The Combination of Propolis Extract and Bovine Bone Graft Through SMAD3 Expression and Woven Bone in The Socket Preservation (An In Vivo Study). Res J Pharm Technol. 2023; 16(10): 4805–10. 
4.    Faadhila T. Valentina M. Munadziroh E. Nirwana I. Soekartono H. Surboyo M. Bovine sponge amnion stimulates socket healing: A histological analysis. J Adv Pharm Technol Res. 2021; 12(1): 99–103. 
5.    Kamadjaja MJK. Salim S. Subiakto BDS. Application of hydroxyapatite scaffold from portunus pelagicus on opg and rankl expression after tooth extraction of cavia cobaya. Res J Pharm Technol. 2021; 14(9): 4647–51. 
6.    Kalsi AS. Kalsi JS. Bassi S. Alveolar ridge preservation: why, when and how. Br Dent J. 2019; 227(4): 264–74. 
7.    Forouzanfar A. Radvar M. Shayesteh E. Mohammadipour HS. Clinical assessment of a synthetic biomaterial containing hydroxyapatite and beta tricalcium phosphate in socket preservation. Res J Pharm Technol. 2022; 15(11): 5126–31. 
8.    Ferneini EM. Goupil MT. Evidence-Based Oral Surgery: A Clinical Guide for the General Dental Practitioner. Evidence-Based Oral Surgery. 2019. 
9.    Munadziroh E. Askandar MG. Yuliati A. Surboyo MDC. Wan Harun WHA. The effect of secretory leukocyte protease inhibitor amnion membrane on incisional wound healing. J Oral Biol Craniofacial Res [Internet]. 2022; 12(3): 358–62. Available from: https://doi.org/10.1016/j.jobcr.2022.04.001
10.    Indrawati DW. Munadziroh E. Sulisetyawati TIB. Fadhlallah PM El. Sponge amnion potential in post tooth extraction wound healing by interleukin-6 and bone morphogenetic protein-2 expression analysis: An animal study. Dent Res J (Isfahan). 2019; 16(5): 283–8. 
11.    Tang K. Wu J. Xiong Z. Ji Y. Sun T. Guo X. Human acellular amniotic membrane: A potential osteoinductive biomaterial for bone regeneration. J Biomater Appl. 2018; 32(6): 754–64. 
12.    Siswanto R. Rizkawati D. Ifada A. Putra A. Rachmayani F. Widiyanti P. Bovine freeze dried amniotic membrane (FD-AM) covered sterile gauze for wound dressing. Asian Acad Soc Int Confrence. 2013; 68–71. 
13.    Gunasekaran D. Thada R. Jeyakumar GFS. Manimegalai NP. Shanmugam G. Sivagnanam UT. Physicochemical characterization and self-assembly of human amniotic membrane and umbilical cord collagen: A comparative study. Int J Biol Macromol [Internet]. 2020; 165: 2920–33. Available from: https://doi.org/10.1016/j.ijbiomac.2020.10.107
14.    Go YY. Kim SE. Cho GJ. Chae SW. Song JJ. Promotion of osteogenic differentiation by amnion/chorion membrane extracts. J Appl Biomater Funct Mater. 2016; 14(2):e171–80. 
15.    Fénelon M. Catros S. Fricain JC. What is the benefit of using amniotic membrane in oral surgery? A comprehensive review of clinical studies. Clin Oral Investig. 2018; 22(5): 1881–91. 
16.    Octarina. Munadziroh E. Razak FA. Surboyo MDC. Characterisation of Bovine Amniotic Membrane with Hydroxyapatite Bio-Composite. Coatings. 2022; 12(10). 
17.    Fickl S. Zuhr O. Wachtel H. Stappert CFJ. Stein JM. Hürzeler MB. Dimensional changes of the alveolar ridge contour after different socket preservation techniques. J Clin Periodontol. 2008; 35(10): 906–13. 
18.    Sabouri L. Farzin A. Kabiri A. Milan PB. Farahbakhsh M. Mehdizadehkashi A. et al. Mineralized Human Amniotic Membrane as a Biomimetic Scaffold for Hard Tissue Engineering Applications. ACS Biomater Sci Eng [Internet]. 2020; Nov 9; 6(11): 6285–98. Available from: https://pubs.acs.org/doi/10.1021/acsbiomaterials.0c00881
19.    Zhang X. Atsuta I. Narimatsu I. Ueda N. Takahashi R. Egashira Y. et al. Replacement process of carbonate apatite by alveolar bone in a rat extraction socket. Materials (Basel). 2021; 14(16): 1–11. 
20.    Fujisawa K. Akita K. Fukuda N. Kamada K. Kudoh T. Ohe G. et al. Compositional and histological comparison of carbonate apatite fabricated by dissolution–precipitation reaction and Bio-Oss®. J Mater Sci Mater Med [Internet]. 2018; 29(8). Available from: http://dx.doi.org/10.1007/s10856-018-6129-2
21.    Kudoh K. Fukuda N. Kasugai S. Tachikawa N. Koyano K. Matsushita Y. et al. Maxillary Sinus Floor Augmentation Using Low-Crystalline Carbonate Apatite Granules With Simultaneous Implant Installation: First-in-Human Clinical Trial. J Oral Maxillofac Surg [Internet]. 2019; 77(5): 985.e1-985.e11. Available from: https://doi.org/10.1016/j.joms.2018.11.026
22.    Wijayanti P. Lastianny SP. Suryono S. Growth of NIH 3T3 Fibroblast Cells Exposed to Carbonated Hydroxyapatite with Incorporated Propolis. Indones J Cancer Chemoprevention. 2020; 11(2): 54. 
23.    Kusumawati I. Suryono. Syaify A. Loading and Release Profile Assay of Carbonated Hydroxyapatite Incorporated with Propolis as Bone Graft Material. Maj Obat Tradis. 2020; 25(2): 123–7. 
24.    Kusumawati I. Suryono. Syaify A. The enhancement of type 1 collagen expression after 10% propolis-carbonated hydroxyapatite application in periodontitis-induced rabbits. Dent J. 2021; 54(1): 16–20. 
25.    Sari M. Kristianto NA. Chotimah. Ana ID. Yusuf Y. Carbonated hydroxyapatite-based honeycomb scaffold coatings on a titanium alloy for bone implant application—physicochemical and mechanical properties analysis. Coatings. 2021; 11(8). 
26.    Sari M. Hening P. Chotimah. Ana ID. Yusuf Y. Porous structure of bioceramics carbonated hydroxyapatite-based honeycomb scaffold for bone tissue engineering. Mater Today Commun [Internet]. 2021; 26(January):102135. Available from: https://doi.org/10.1016/j.mtcomm.2021.102135
27.    Oley MC. Islam AA. Hatta M. Hardjo M. Nirmalasari L. Rendy L. et al. Effects of platelet-rich plasma and carbonated hydroxyapatite combination on cranial defect Bone Regeneration: An animal study. Wound Med [Internet]. 2018; 21(January): 12–5. Available from: https://doi.org/10.1016/j.wndm.2018.05.001
28.    Aziz S. Ana ID. Yusuf Y. Pranowo HD. Synthesis of Biocompatible Silver-Doped Carbonate Hydroxyapatite Nanoparticles Using Microwave-Assisted Precipitation and In Vitro Studies for the Prevention of Peri-Implantitis. J Funct Biomater. 2023; 14(7). 
29.    Rianti D. Kristanto W. Damayanti H. Putri TS. Dinaryanti A. Syahrom A. et al. The Characteristics and Potency of Limestone-based carbonate hydroxyapatite to Viability and Proliferation of Human Umbilical Cord Mesenchymal Stem Cell. Res J Pharm Technol. 2022; 15(5): 2285–92. 
30.    Atasoy A. Kose GT. Biology of Cancellous Bone Graft Materials and their Usage for Bone Regeneration. JSM Biotechnol Bioeng. 2016; 3(2). 
31.    Tsuchida S. Nakayama T. Recent Clinical Treatment and Basic Research on the Alveolar Bone. Biomedicines. 2023; 11(3). 
32.    Peeran SW. Ramalingam K. 5. Alveolar Bone. In: Essentials of Periodontics and Oral Implantology. 2021. 
33.    Oosterlaken BM. Vena MP. de With G. In Vitro Mineralization of Collagen. Adv Mater. 2021; 33(16). 
34.    Nandiyanto ABD. Oktiani R. Ragadhita R. How to read and interpret ftir spectroscope of organic material. Indones J Sci Technol. 2019; 4(1): 97–118. 
35.    Matsuura A. Kubo T. Doi K. Hayashi K. Morita K. Yokota R. et al. Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents. Dent Mater J. 2009; 28(2): 234–42. 
36.    Budi HS. Davidyants A. Rudiansyah M. Ansari MJ. Suksatan W. Sultan MQ. et al. Alendronate reinforced polycaprolactone-gelatin-graphene oxide: A promising nanofibrous scaffolds with controlled drug release. Mater Today Commun [Internet]. 2022; 32(June): 104108. Available from: https://doi.org/10.1016/j.mtcomm.2022.104108
37.    Choudhary OP. Priyanka. Scanning electron microscope. Advantages and disadvantages in imaging components and applications. Colloquium-journal [Internet]. 2017; 6(5): 1878–9. Available from: http://www.microscopemaster.com/scanning-electron-microscope.html
38.    Angulo DEL. Sobral PJ do A. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. Int J Biol Macromol [Internet]. 2016; 92: 645–53. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2016.07.029
39.    Milla L El. Indrani DJ. Irawan B. Sintesis Dan Uji Porositas Scaffold Hidroksiapatit/Alginat. ODONTO  Dent J. 2018; 5(1): 49. 
40.    Piccirillo C. Silva MF. Pullar RC. Braga Da Cruz I. Jorge R. Pintado MME. et al. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater Sci Eng C [Internet]. 2013; 33(1):103–10. Available from: http://dx.doi.org/10.1016/j.msec.2012.08.014
41.    Setiawatie EM. Airlangga U. Airlangga U. Airlangga U. Carbonate Hydroxyapatite-Hyaluronic Acid as Bone Healing Accelerator: in-vitro and in-vivo Studies on the Alveolar Bone of Wistar Rats. J Int Dent Med Res. 2019;12(4):1280. 
42.    Andriani I. Meiyanto E. Suryono S. Ana ID. The combination of carbonate hydroxyapatite and human β-defensin 3 to enhance collagen fibre density in periodontitis Sprague Dawley rats. Dental Journal. 2020; 53: 76–80. 
43.    Octarina. Munadziroh E. Razak FA. Physical Modification of Bovine Amniotic Membrane for Dental Application. J Int Dent Med Res. 2021; 14(4): 1425–8. 
44.    Sharma M. Kotwal B. Mahajan N. Kharyal S. Amniotic Membrane in Periodontics: An Insight. Int J Sci C Study. 2017; 4(11): 211–4. 
45.    Riaz T. Zeeshan R. Zarif F. Ilyas K. Muhammad N. Safi SZ. et al. FTIR analysis of natural and synthetic collagen. Appl Spectrosc Rev [Internet]. 2018; 53(9): 703–46. Available from: https://doi.org/10.1080/05704928.2018.1426595
46.    Savitri IJ. Medianto HT. Sakinah NN. Priambodo AP. Kalista VP. Hari P. et al. The Role of Robusta Green Bean Extract in Decreasing Il-1β Levels on Dental Pulp Stem Cells (Dpsc) Induced by Lps Porphyromonas Gingivalis. Research Journal of Pharmacy and Technology. 2023;  16: 3638–44. 
47.    Irmawati A. Melinda N. Tantiana. Azzaim YA. Balqis NF. Al-Tayar B. The role of continuous moderate-intensity exercise on increasing collagen density after tooth extraction. Dent J. 2024; 57(1): 38–44. 
48.    Fereshteh Z. Freeze-drying technologies for 3D scaffold engineering. Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications. Elsevier Ltd; 2018. 151–174 p. 
49.    Chen L. Wu Z. Zhou Y. Li L. Wang Y. Wang Z. et al. Biomimetic porous collagen/ hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci. 2017; 134(37): 1–8. 
50.    Long H. Ma K. Xiao Z. Ren X. Yang G. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. Peer J. 2017;1–18. 
51.    Mawuntu VJ. Yusuf Y. Porous-structure engineering of hydroxyapatite-based scaffold synthesized from Pomacea canaliculata shell by using polyethylene oxide as polymeric porogen. IOP Conf Ser Mater Sci Eng. 2018; 432(1). 
52.    Lu J. Yu H. Chen C. Biological properties of calcium phosphate biomaterials for bone repair: A review. RSC Adv. 2018; 8(4): 2015–33. 
53.    Rianti D. Fanny G. Nathania RV. Purnamasari AE. Putri RR. Soekartono H. et al. The Characteristics, Swelling Ratio and Water Content Percentage of Chitosan-gelatin/limestone-based Carbonate Hydroxyapatite Composite Scaffold. Int J Integr Eng. 2022;14(2):13–23. 
54.    Schoof H. Apel J. Heschel I. Rau G. Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res. 2001; 58(4): 352–7. 
55.    Lutzweiler G. Halili AN. Vrana NE. The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation. Pharmaceutics. 2020; 12(7): 1–29. 
56.    Utomo DN. Mahyudin F. Wardhana TH. Purwati P. Brahmana F. Gusti AWR. Physicobiochemical Characteristics and Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) in Biodegradable Porous Sponge Bovine Cartilage Scaffold. Int J Biomater [Internet]. 2019; Jan 20; 2019: 1–11. Available from: https://www.hindawi.com/journals/ijbm/2019/8356872/
57.    Tohamy KM. Mabrouk M. Soliman IE. Beherei HH. Aboelnasr MA. Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells. Int J Biol Macromol [Internet]. 2018; Jun; 112: 448–60. Available from: https://doi.org/10.1016/j.ijbiomac.2018.01.181
58.    Zhang Q. Jiang Y. Zhang Y. Ye Z. Tan W. Lang M. Effect of porosity on long-term degradation of poly (ε-caprolactone) scaffolds and their cellular response. Polym Degrad Stab [Internet]. 2013; Jan 4; 98(1): 209–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141391012003916
59.    Torres-Sanchez C. Al Mushref FRA. Norrito M. Yendall K. Liu Y. Conway PP. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater Sci Eng C [Internet]. 2017; 77: 219–28. Available from: http://dx.doi.org/10.1016/j.msec.2017.03.249
60.    Antoniac I V. Antoniac A. Vasile E. Tecu C. Fosca M. Yankova VG. et al. In vitro characterization of novel nanostructured collagen-hydroxyapatite composite scaffolds doped with magnesium with improved biodegradation rate for hard tissue regeneration. Bioact Mater [Internet]. 2021; 6(10): 3383–95. Available from: https://doi.org/10.1016/j.bioactmat.2021.02.030
61.    Fessi R Al. Santoso JV. Sugiarto SS. Danudiningrat CP. Nirwana I. Meizarini A. et al. Analysis of Characteristics of Cancellous Rib Freeze-Dried Bovine Bone as a Substitution Material. J Int Dent Med Res. 2024; 17(1): 104–9. 
62.    Ergun C. Liu H. Webster TJ. Olcay E. Yilmaz Ş. Sahin FC. Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher Ca/P ratios. J Biomed Mater Res - Part A. 2008; 85(1): 236–41. 
63.    Ana ID. Matsuya S. Ishikawa K. Engineering of Carbonate Apatite Bone Substitute Based on Composition-Transformation of Gypsum and Calcium Hydroxide. Engineering. 2010; 02(05): 344–52. 




Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available