Author(s):
Fery Eko Pujiono, Dwi Setyawan, Juni Ekowati, Tri Ana Mulyati
Email(s):
ferypujiono@gmail.com
DOI:
10.52711/0974-360X.2025.00565
Address:
Fery Eko Pujiono1,2*, Dwi Setyawan3, Juni Ekowati3, Tri Ana Mulyati2
1Doctoral of Pharmacy, Faculty of Pharmacy, Airlangga University, Indonesia.
2Department of Pharmacy, Faculty of Pharmacy, Institut Ilmu Kesehatan Bhakti Wiyata, Indonesia.
3Department of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 8,
Year - 2025
ABSTRACT:
Cinnamic acid cocrystals have been synthesized with nicotinamide coformers using the solvent evaporation method to produce white crystals. Characterization results with DSC show that cinnamic acid cocrystals have different endothermic peaks of 110°C, cinnamic acid (136°C), and individual nicotinamide (127°C). PXRD results where cinnamic acid cocrystals have different diffractogram patterns with individual cinnamic acid, namely diffractogram peaks at 6.7°, 13.4°, and 20.2°. The FTIR characterization results also indicate that cinnamic acid cocrystals exhibit distinct FTIR spectra. Specifically, there is an absence of twin peaks in the wave number range of 3400-3000 cm-1 corresponding to the -NH group, and absorption peaks resembling fusion appear at wave numbers around 1600 cm-1 and 1500 cm-1, corresponding to -C=O and -C=C alkene groups. Additionally, SEM analysis reveals that while cinnamic acid has an irregular plate-like shape, the formed cocrystals exhibit a smooth surface morphology and an irregular block-like shape. Furthermore, the solubility test demonstrates that the solubility of cinnamic acid increases from 0.57 g/100 ml to 1.09 g/100 ml after cocrystallization, indicating a proportional enhancement in Dissolution Efficiency (DE) from 80.104% to 96.021%. The bond formation in the cocrystal is a hydrogen bond, as indicated by the isosurface map and the RDG Scatter Plot. This bond occurs between the carboxylic group of cinnamic acid and the amide group of nicotinamide in the C=OCA···NICH-N synthon, as well as between the hydroxide group of cinnamic acid and the carboxylic group of nicotinamide in the O-HCA···NICO=C synthon. The hydrogen bond is represented by a blue spike at sign(?2)? around -0.04 a.u.
Cite this article:
Fery Eko Pujiono, Dwi Setyawan, Juni Ekowati, Tri Ana Mulyati. Synthesis, Characterization and Dissolution Performance of Cocrystal of Cinnamic Acid with Nicotinamide: Experimental and Computation Investigation. Research Journal Pharmacy and Technology. 2025;18(8):3929-8. doi: 10.52711/0974-360X.2025.00565
Cite(Electronic):
Fery Eko Pujiono, Dwi Setyawan, Juni Ekowati, Tri Ana Mulyati. Synthesis, Characterization and Dissolution Performance of Cocrystal of Cinnamic Acid with Nicotinamide: Experimental and Computation Investigation. Research Journal Pharmacy and Technology. 2025;18(8):3929-8. doi: 10.52711/0974-360X.2025.00565 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-68
REFERENCES:
1. Harahap FS, Marpaung H. Perbandingan Kandungan Asam Sinamat Dan Asam Benzoat Dalam Kemenyan (Styrax Benzoin) Kualitas I, Iii Dan V Yang Diperoleh Dari Daerah Tapanuli Utara Dengan Metode Kromatografi Gas. 2018; 3: 42–7. https://doi.org/https://doi.org/10.24114/ijcst.v7i1.56438
2. Riyanto A, Yunilawati R, Nuraeni C. Isolasi Metil Sinamat dari Minyak Atsiri Laja Gowah (Alpinia malaccensis (Burm. f.)). Jurnal Kimia dan Kemasan. 2012; 34: 237–42. https://doi.org/https://doi.org/10.24817/jkk.v34i2.1859
3. Youn I, Han AR, Piao D, Lee H, Kwak H, Lee Y, et al. Phytochemical and pharmacological properties of the genus Alpinia from 2016 to 2023. Nat Prod Rep. 2024; https://doi.org/https://doi.org/10.1039/d4np00004h
4. Zeng L, Wang X, Tan H, Liao Y, Xu P, Kang M, et al. Alternative pathway to the formation of trans-cinnamic acid derived from L-phenylalanine in tea (Camellia sinensis) plants and other plants. J Agric Food Chem. 2020; 68: 3415–24. https://doi.org/https://doi.org/10.1021/acs.jafc.9b07467
5. Manogaran Y, Jagadeesan D, Narain K, Kumari U, Anand P, Shanmugavelu S. Antibacterial Response of Cinnamomum iners Leaves Extract and Cinnamic Acid Derivative against Pathogens that Triggers Periimplantitis. Res J Pharm Technol. 2023; 1471–80. https://doi.org/10.52711/0974-360X.2023.00242
6. Wang Y, Sun Y, Wang J, Zhou M, Wang M, Feng J. Antifungal activity and action mechanism of the natural product cinnamic acid against Sclerotinia sclerotiorum. Plant Dis. 2019; 103: 944–50. https://doi.org/https://doi.org/10.1094/PDIS-08-18-1355-RE
7. Li H, Ma Y, Gao X, Chen G, Wang Z. Probing the structure-antioxidant activity relationships of four cinnamic acids porous starch esters. Carbohydr Polym. 2021; 256: 117428.
8. dos Santos JAB, Chaves Júnior JV, de Araújo Batista RS, de Sousa DP, Ferreira GLR, de Lima Neto SA, et al. Preparation, physicochemical characterization and solubility evaluation of pharmaceutical cocrystals of cinnamic acid. J Therm Anal Calorim. 2021; 145: 379–90.
9. Feng L, Cheng J, Su W, Li H, Xiao T, Chen D, et al. Cinnamic acid hybrids as anticancer agents: A mini‐review. Arch Pharm (Weinheim). 2022; 355: 2200052. https://doi.org/https://doi.org/10.1002/ardp.202200052
10. Das B, Baidya ATK, Mathew AT, Yadav AK, Kumar R. Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. Bioorg Med Chem. 2022;116614. https://doi.org/https://doi.org/10.1002/ardp.202200052
11. Sopyan I, Gozali D, Megantara S, Wahyuningrum R, KS IS. AN Efforts To Increase The Solubility and Dissolution of Active Pharmaceutical Ingredients. Int J App Pharm. 2022; 14: 22–7. https://doi.org/https://doi.org/10.22159/ijap.2022v14i1.43431
12. Jit T, Shil D, Kumari Dasgupta R, Mallick S, Mukherjee S. Cocrystal: A Review on the Design and Preparation of Pharmaceutical Cocrystals. Asian Journal of Research in Pharmaceutical Sciences. 2023; 296–302. https://doi.org/10.52711/2231-5659.2023.00050
13. Vyas G, Jigar S, Jacob S. Enhancement of Physicochemical and Pharmacokinetic Characteristics of Ranolazine drug substance using Cocrystalization Technique. Res J Pharm Technol. 2024; 59–66. https://doi.org/10.52711/0974-360X.2024.00010
14. Dutt B, Choudhary M, Budhwar V. Enhancement of Stability profile of Aspirin through Cocrystallization Technique. Res J Pharm Technol. 2022; 768–72. https://doi.org/10.52711/0974-360X.2022.00128
15. Budiman A, Megantara S, Saraswati P. Synthesize Glibenclamide-Ascorbic Acid Cocrystal Using Solvent Evaporation Method to Increase Solubility and Dissolution Rate of Glibenclamide. Res J Pharm Technol. 2019; 12: 5805. https://doi.org/10.5958/0974-360X.2019.01005.9
16. Wisudyaningsih B, Sallama S, Siswandono S, Setyawan D. The Effect of pH and Cocrystal Quercetin-Isonicotinamide on Quercetin Solubility and its Thermodynamic. Res J Pharm Technol. 2021; 4657–61. https://doi.org/10.52711/0974-360X.2021.00809
17. J T, NN S, Raheem T A, SKK S, G T. Modafinil Cocrystals for Altered Physicochemical Properties. Res J Pharm Technol. 2021; 4891–6. https://doi.org/10.52711/0974-360X.2021.00850
18. Fael H, Barbas R, Prohens R, Ràfols C, Fuguet E. Synthesis and characterization of a new norfloxacin/resorcinol cocrystal with enhanced solubility and dissolution profile. Pharmaceutics. 2021; 14: 49. https://doi.org/https://doi.org/10.3390/pharmaceutics14010049
19. Duan C, Liu W, Tao Y, Liang F, Chen Y, Xiao X, et al. Two novel palbociclib-resorcinol and palbociclib-orcinol cocrystals with enhanced solubility and dissolution rate. Pharmaceutics. 2021; 14: 23. https://doi.org/https://doi.org/10.3390/pharmaceutics14010023
20. Sabouri S, Shayanfar A. Effects of Surfactant and Polymer on Thermodynamic Solubility and Solution Stability of Carbamazepine–Cinnamic Acid Cocrystal. Pharm Chem J. 2022; 56: 913–7. https://doi.org/https://doi.org/10.1007/s11094-022-02726-8
21. Hiendrawan S, Veriansyah B, Tjandrawinata R. Solid-state properties and solubility studies of novel pharmaceutical cocrystal of itraconazole. International Journal of Applied Pharmaceutics. 2018; 10: 97–104. https://doi.org/https://doi.org/10.22159/IJAP.2018V10I5.26663
22. Pawar RR, Nahire SB. Investigation, correlation and DFT study for solubility of malonic acid in water + methanol and water + ethanol binary solvents at T = 293.15 to 313.15 K. Res J Pharm Technol. 2021; 14: 1226–32. https://doi.org/10.5958/0974-360X.2021.00218.3
23. Ghammamy S, Qaitmas NA, Lashgari A. Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for the Two New Halo Organic Compounds. Asian Journal of Research in Chemistry. 2015; 8: 60. https://doi.org/10.5958/0974-4150.2015.00013.9
24. Ali A, Kuznetsov A, Ibrahim M, Abbas A, Akram N, Maqbool T. Chemistry and modern techniques of characterization of Co-crystals. In: Drug Formulation Design. IntechOpen; 2022. https://doi.org/https://doi.org/10.5772/intechopen.108694
25. Majumdar D, Philip JE, Tüzün B, Frontera A, Gomila RM, Roy S, et al. Unravelling the synthetic mimic, spectroscopic insights, and supramolecular crystal engineering of an innovative heteronuclear Pb (II)-salen cocrystal: an integrated DFT, QTAIM/NCI Plot, NLO, molecular docking/PLIP, and antibacterial appraisal. J Inorg Organomet Polym Mater. 2022; 32: 4320–39. https://doi.org/https://doi.org/10.1007/s10904-022-02448-0
26. Dey P, Islam S, Das P, Seth SK. Structural and computational insights into two trimethylenedipyridine co-crystals: Inputs from X-ray diffraction, Hirshfeld surface, PIXEL, QTAIM and NCI plots. J Mol Struct. 2024; 1296: 136820. https://doi.org/https://doi.org/10.1016/j.molstruc.2023.136820
27. Pokharia S. An Atoms-in-molecules (AIM) interpretation of organotin-peptide system: I. Di- n -butyltin(IV) derivative of glycyltryptophane. Asian Journal of Research in Chemistry. 2017; 10: 115. https://doi.org/10.5958/0974-4150.2017.00017.7
28. Huang S, Cheemarla VKR, Tiana D, Lawrence SE. Experimental and theoretical investigation of hydrogen-bonding interactions in cocrystals of sulfaguanidine. Cryst Growth Des. 2023; 23: 2306–20. https://doi.org/https://doi.org10.1021/acs.cgd.2c01337
29. Muthusamy AR, Singh A, Sundaram MSS, Wagh Y, Jegorov A, Jain AK. In-silico aided screening and characterization results in stability enhanced novel roxadustat co-crystal. J Pharm Sci. 2024; 113: 1190–201. https://doi.org/https://doi.org/10.1016/j.xphs.2023.10.024
30. Yadav B, Balasubramanian S, Chavan RB, Thipparaboina R, Naidu VGM, Shastri NR. Hepatoprotective cocrystals and salts of riluzole: prediction, synthesis, solid state characterization, and evaluation. Cryst Growth Des. 2018; 18: 1047–61. https://doi.org/https://doi.org/10.1021/ACS.CGD.7B01514
31. Pujiono FE, Setyawan D, Ekowati J. Hydrogen bond analysis of the p-coumaric acid-nicotinamide cocrystal using the DFT and AIM method. Pharmacy Education. 2024; 24: 57–62. https://doi.org/https://doi.org/10.46542/pe.2024.243.5762
32. Yadav A, Chaudhary R, Bahota AS, Prajapati P, Pandey J, Narayan A, et al. Combined spectroscopic and quantum chemical study to explore the effect of hydrogen bonding in hydrochlorothiazide-nicotinamide cocrystal. J Mol Struct. 2024;1300:137208. https://doi.org/https://doi.org/10.2139/ssrn.4387023
33. Kopjar M, Buljeta I, Jelić I, Kelemen V, Šimunović J, Pichler A. Encapsulation of cinnamic acid on plant-based proteins: Evaluation by HPLC, DSC and FTIR-ATR. Plants. 2021; 10: 2158. https://doi.org/https://doi.org/10.3390/plants10102158
34. Ding Y, Zhao T, Fang J, Song J, Dong H, Liu J, et al. Recent developments in the use of nanocrystals to improve bioavailability of APIs. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024; 16: e1958. https://doi.org/https://doi.org/10.1002/wnan.1958
35. Setyawan D, Sulistyowaty MI, Sari IP, Yusuf H, Zaini E. The formation of p-Methoxycinnamic acid-caffeine co-crystal by the solution evaporation method and its physicochemical characterization. In: AIP Conference Proceedings. AIP Publishing; 2023. https://doi.org/https://doi.org/10.1063/5.0119975
36. Trivedi HR, Borkar DS, Puranik PK. Experimental design approach for development of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution. Journal of Research in Pharmacy. 2020; 24: 720–37. https://doi.org/https://doi.org/10.35333/jrp.2020.226
37. Júnior JVC, Dos Santos JAB, Lins TB, de Araújo Batista RS, de Lima Neto SA, de Santana Oliveira A, et al. A new ferulic acid–nicotinamide cocrystal with improved solubility and dissolution performance. J Pharm Sci. 2020; 109: 1330–7.
38. Silva JRA, da Cunha Holanda BB, e Silva GT de S, Moraes CRP, Barbosa TWL, dos Santos ÉM, et al. Gemfibrozil-trans-cinnamic acid co-crystal: Synthesis, characterization, in vitro solubility and cell viability studies. J Appl Pharm Sci. 2023; 13: 18–26. https://doi.org/https://doi.org/10.7324/japs.2023.93828
39. Batista RS de A, Melo TBL, dos Santos JAB, de Andrade FHD, Macedo RO, de Souza FS. Evaluation of crystallization technique relating to the physicochemical properties of cinnamic acid. J Therm Anal Calorim. 2019; 138: 3727–35. https://doi.org/https://doi.org/10.1007/s10973-019-08455-7
40. Bolla G, Sarma B, Nangia AK. Crystal engineering and pharmaceutical crystallization. In: Hot topics in crystal engineering. Elsevier; 2021. p. 157–229. https://doi.org/https://doi.org/10.1016/B978-0-12-818192-8.00004-4
41. Sultan M, Wu J, Haq IU, Imran M, Yang L, Wu J, et al. Recent progress on synthesis, characterization, and performance of energetic cocrystals: A review. Molecules. 2022; 27: 4775. https://doi.org/https://doi.org/10.3390/molecules27154775
42. Sarangi S, Remya PN, Damodharan N. Advances in solvent based cocrystallization: Bridging the gap between theory and practice. J Drug Deliv Sci Technol. 2024; 105619. https://doi.org/https://doi.org/10.1016/j.jddst.2024.105619
43. Karimi-Jafari M, Padrela L, Walker GM, Croker DM. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des. 2018; 18: 6370–87. https://doi.org/https://doi.org/10.1021/acs.cgd.8b00933
44. Thayyil AR, Juturu T, Nayak S, Kamath S. Pharmaceutical co-crystallization: Regulatory aspects, design, characterization, and applications. Adv Pharm Bull. 2020; 10: 203. https://doi.org/https://doi.org/10.34172/apb.2020.024
45. Bolla G, Sarma B, Nangia AK. Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs. Chem Rev. 2022; 122: 11514–603. https://doi.org/https://doi.org/10.1016/B978-0-12-818192-8.00004-4
46. Wong SN, Fu M, Li S, Kwok WTC, Chow S, Low KH, et al. Discovery of new cocrystals beyond serendipity: lessons learned from successes and failures. CrystEngComm. 2024; https://doi.org/https://doi.org/10.1039/D4CE00021H
47. Sakhiya DC, Borkhataria CH. A review on advancement of cocrystallization approach and a brief on screening, formulation and characterization of the same. Heliyon. 2024; https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e29057
48. Kilinkissa OEY, Govender KK, Báthori NB. Melting point–solubility–structure correlations in chiral and racemic model cocrystals. Cryst Eng Comm. 2020; 22: 2766–71. https://doi.org/https://doi.org/10.1039/D0CE00014K
49. Liu L, Wang JR, Mei X. Enhancing the stability of active pharmaceutical ingredients by the cocrystal strategy. Cryst Eng Comm. 2022; 24: 2002–22. https://doi.org/https://doi.org/10.1039/D1CE01327K
50. Ouyang J, Xing X, Yang B, Li Y, Xu L, Zhou L, et al. Terahertz spectroscopic characterization and DFT calculations of vanillin cocrystals with nicotinamide and isonicotinamide. Cryst Eng Comm. 2023; 25: 2038–51. https://doi.org/https://doi.org/10.1039/D2CE01642G
51. Thayyil AR, Juturu T, Nayak S, Kamath S. Pharmaceutical co-crystallization: Regulatory aspects, design, characterization, and applications. Adv Pharm Bull. 2020; 10: 203. https://doi.org/https://doi.org/10.34172/apb.2020.024
52. Voguri RS, Ranga S, Dey A, Ghosal S. Solid-State Phase Transition of Agomelatine–Phosphoric Acid Molecular Complexes along the Salt–Cocrystal Continuum: Ab Initio Powder X-Ray Diffraction Structure Determination and DFT-D2 Analysis. Cryst Growth Des. 2020; 20: 7647–57. https://doi.org/https://doi.org/10.1021/acs.cgd.0c00752
53. Sopyan I, Alvin B, Insan Sunan KS, Megantara SA. Systematic review: co-crystal as efforts to improve physicochemical and bioavailability properties of oral solid dosage form. Int J Appl Pharm. 2021; 13: 43–52. https://doi.org/10.22159/IJAP.2021V13I1.39594
54. Harichandana T, Reddy S, RAO A. Exploring cocrystals and polymorphism in pharmaceutical science: A comprehensive review. International Journal of Science and Research Archive. 2024; 12: 198–205. https://doi.org/https://doi.org/10.30574/ijsra.2024.12.1.0701
55. Garbacz P, Wesolowski M. Benzodiazepines co-crystals screening using FTIR and Raman spectroscopy supported by differential scanning calorimetry. Spectrochim Acta A Mol Biomol Spectrosc. 2020; 234: 118242. https://doi.org/https://doi.org/10.1016/j.saa.2020.118242
56. Kamis MNAA, Zaki HM, Anuar N, Jalil MN. Synthesis, characterization and morphological study of nicotinamide and p-coumaric acid cocrystal. Indonesian Journal of Chemistry. 2020; 20: 661–79. https://doi.org/https://doi.org/10.22146/ijc.45530
57. Xie Y, Zhou J, Zhang B, Zhang L, Yang D, Yang S, et al. Quality control of naringenin-carbamazepine drug-drug cocrystal: Quantitative analytical method construction of ATR-FTIR and Raman combined with chemometrics. Microchemical Journal. 2024; 202: 110774. https://doi.org/https://doi.org/10.1016/j.microc.2024.110774
58. Li Y, Zhang Y, Xu H, Li M, Li Z, Song Z yu, et al. Synthesis and characterization of supramolecular assembly probenecid cocrystal. J Mol Struct. 2024; 1298: 136786. https://doi.org/https://doi.org/10.1016/j.molstruc.2023.136786
59. Abdullah A, Mutmainnah M, Wikantyasning ER. Cocrystals of cefixime with nicotinamide: improved solubility, dissolution, and permeability. Indonesian Journal of Pharmacy. 2022; 394–400. https://doi.org/https://doi.org/10.22146/ijp.2530
60. Sulistyowaty MI, Setyawan D, Sari R, Paramanandana A, Maharani NA, Simorangkir TP. Preparation and Physicochemical Characterizations of p-Methoxycinnamic acid–Succinic Acid Cocrystal by Solvent Evaporation Technique. Open Access Maced J Med Sci. 2022; 10: 1444–9. https://doi.org/https://doi.org/10.3889/oamjms.2022.10193
61. Rathi N, Paradkar A, Gaikar VG. Polymorphs of curcumin and its cocrystals with cinnamic acid. J Pharm Sci. 2019; 108: 2505–16. https://doi.org/https://doi.org/10.1016/j.xphs.2019.03.014
62. Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics. 2018; 10: 18. https://doi.org/https://doi.org/10.3390/pharmaceutics10010018
63. Bavishi DD, Borkhataria CH. Spring and parachute: How cocrystals enhance solubility. Progress in Crystal Growth and Characterization of Materials. 2016; 62: 1–8. https://doi.org/https://doi.org/10.1016/j.pcrysgrow.2016.07.001
64. Martínez LM, Cruz-Angeles J, Vázquez-Dávila M, Martínez E, Cabada P, Navarrete-Bernal C, et al. Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics. 2022; 14: 2003. https://doi.org/https://doi.org/10.3390/pharmaceutics14102003
65. Carpio‐Martínez P, Barquera‐Lozada JE, Pendás AM, Cortés‐Guzmán F. Laplacian of the Hamiltonian Kinetic Energy Density as an Indicator of Binding and Weak Interactions. ChemPhysChem. 2020; 21: 194–203. https://doi.org/https://doi.org/10.1002/cphc.201900769
66. Hammami F, Issaoui N. A DFT study of the hydrogen bonded structures of pyruvic acid–water complexes. Front Phys. 2022; 10: 901736. https://doi.org/https://doi.org/10.3389/fphy.2022.901736
67. Espinosa E, Lecomte C, Molins E. Experimental electron density overlapping in hydrogen bonds: topology vs. energetics. Chem Phys Lett. 1999; 300: 745–8. https://doi.org/https://doi.org/10.1016/S0009-2614(98)01399-2
68. Pendás ÁM, Francisco E, Suarez D, Costales A, Díaz N, Munárriz J, et al. Atoms in molecules in real space: a fertile field for chemical bonding. Physical Chemistry Chemical Physics. 2023; 25: 10231–62. https://doi.org/https://doi.org/10.1039/d2cp05540f
69. Xue N, He B, Jia Y, Yang C, Wang J, Li M. The mechanism of binding with the α-glucosidase in vitro and the evaluation on hypoglycemic effect in vivo: Cocrystals involving synergism of gallic acid and conformer. European Journal of Pharmaceutics and Biopharmaceutics. 2020; 156: 64–74. https://doi.org/https://doi.org/10.1016/j.ejpb.2020.08.024
70. Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021; 11: 2537–64. https://doi.org/10.1016/j.apsb.2021.03.030
71. Guan D, Xuan B, Wang C, Long R, Jiang Y, Mao L, et al. Improving the physicochemical and biopharmaceutical properties of active pharmaceutical ingredients derived from traditional Chinese medicine through cocrystal engineering. Pharmaceutics. 2021; 13: 2160.
72. Bhatia M, Devi S. Co-crystallization: a green approach for the solubility enhancement of poorly soluble drugs. Cryst Eng Comm. 2024; 26: 293–311. https://doi.org/https://doi.org/10.1039/d3ce01047c