Author(s): Sylma Dhini Avitra, David Fernando, Marlyn Dian Laksitorini, Teuku Nanda Saifullah Sulaiman

Email(s): tn_saifullah@ugm.ac.id

DOI: 10.52711/0974-360X.2025.00572   

Address: Sylma Dhini Avitra1, David Fernando2, Marlyn Dian Laksitorini1, Teuku Nanda Saifullah Sulaiman1*
1Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta 55281, Indonesia.
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta 55281, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 8,     Year - 2025


ABSTRACT:
Rice husk (RH) is a by-product of the rice milling process and is regarded as agricultural waste if not utilized properly. RHs are recognized to contain significant nutritional benefits, including cellulose, hemicellulose, lignin, hydrated silica, organic carbons, and potassium. One of the most often used cellulose derivatives in the food and pharmaceutical business is microcrystalline cellulose (MCC). MCC's isolation process consists of four stages, which are delignification, bleaching, hydrolysis, and drying. These steps are linked to various crucial reactions, including cellulose yield (%wt/wt), MCC yield (%wt/wt), and crystallinity index (%CrI). This review aims to identify the ideal parameters for the delignification, bleaching, hydrolysis, and drying processes involved in the extraction of MCC from RH. The effects of these parameters on the yield of cellulose, MCC, and CrI are also discussed. The result shows that alkaline pulping is usually utilized to treat 100% of the delignification process. MCC yield is negatively correlated with the number of delignification processes, with one step being the ideal amount. The cost-effective reagent for the bleaching process is NaClO, which also reduces CrI compared to samples that have not been bleached. For hydrolysis, HNO3 is utilized to provide higher yields of MCC. There is no association between the drying process and the three dependent variables, which is at odds with the current theory. Further investigation is required to ascertain the impact of the drying process's time, temperature, and technique in addition to the previously listed factors.


Cite this article:
Sylma Dhini Avitra, David Fernando, Marlyn Dian Laksitorini, Teuku Nanda Saifullah Sulaiman. Isolation of Microcrystalline Cellulose (MCC) from Rice Husk: A Review. Research Journal Pharmacy and Technology. 2025;18(8):3979-6. doi: 10.52711/0974-360X.2025.00572

Cite(Electronic):
Sylma Dhini Avitra, David Fernando, Marlyn Dian Laksitorini, Teuku Nanda Saifullah Sulaiman. Isolation of Microcrystalline Cellulose (MCC) from Rice Husk: A Review. Research Journal Pharmacy and Technology. 2025;18(8):3979-6. doi: 10.52711/0974-360X.2025.00572   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-75


REFERENCES:
1.    Singh B. Rice husk ash. In: Waste and Supplementary Cementitious Materials in Concrete. Elsevier. 2018: 417-460. doi:10.1016/B978-0-08-102156-9.00013-4
2.    Satbaev B, Yefremova S, Zharmenov A, et al. Rice Husk Research: From Environmental Pollutant to a Promising Source of Organo-Mineral Raw Materials. Materials. 2021; 14(15): 4119. doi:10.3390/ma14154119
3.    Kolar P, Jin H. Baseline Characterization Data for Raw Rice Husk. Data Brief. 2019; 25: 104219. doi:10.1016/j.dib.2019.104219
4.    Kordi M, Farrokhi N, Pech-Canul MI, Ahmadikhah A. Rice Husk at a Glance: From Agro-Industrial to Modern Applications. Rice Sci. Published online September 2023: S1672630823000963. doi:10.1016/j.rsci.2023.08.005
5.    Phonphuak N, Chindaprasirt P. Types of Waste, Properties, and Durability of Pore-Forming Waste-Based Fired Masonry Bricks. In: Eco-Efficient Masonry Bricks and Blocks. Elsevier; 2015: 103-127. doi:10.1016/B978-1-78242-305-8.00006-1
6.    Hayatun A, Jannah M, Ahmad A, Taba P. Synthetic Bioplastic Film from Rice Husk Cellulose. J Phys Conf Ser. 2020; 1463(1): 012009. doi:10.1088/1742-6596/1463/1/012009
7.    Gao Y, Guo X, Liu Y, et al. A Full Utilization of Rice Husk to Evaluate Phytochemical Bioactivities and Prepare Cellulose Nanocrystals. Sci Rep. 2018; 8(1): 10482. doi:10.1038/s41598-018-27635-3
8.    Cahyani I, Lukitaningsih E, Adhyatmika A, Sulaiman T. Preparation and Characterization of Microcrystalline Cellulose for Pharmaceutical Excipient: A Review. Trop J Nat Prod Res. 2022; 6(10): 1570-1575. doi:10.26538/tjnpr/v6i10.3
9.    Sutiya B, Istikowati WT, Rahmadi A. Kandungan Kimia dan Sifat Serat Alang-alang (Imperata cylindrica) Sebagai Gambaran Bahan Baku Pulp dan Kertas. Published online 2012.
10.    Haldar D, Purkait MK. Micro and Nanocrystalline Cellulose Derivatives af Lignocellulosic Biomass: A Review on Synthesis, Applications and Advancements. Carbohydr Polym. 2020; 250: 116937. doi:10.1016/j.carbpol.2020.116937
11.    Belali NG, Chaerunisaa AY, Rusdiana T. Isolation and Characterization of Microcrystalline Cellulose Derived from Plants as Excipient in Tablet : A Review. Indones J Pharm. 2019; 1(2). doi:10.24198/idjp.v1i2.21515
12.    Trache D, Hussin MH, Hui Chuin CT, et al. Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. Int J Biol Macromol. 2016; 93: 789-804. doi:10.1016/j.ijbiomac.2016.09.056
13.    Queiroz ALP, Kerins BM, Yadav J, et al. Investigating Microcrystalline Cellulose Crystallinity Using Raman Spectroscopy. Cellulose. 2021; 28(14): 8971-8985. doi:10.1007/s10570-021-04093-1
14.    Wool RP. 16 - Lignin Polymers and Composites. In: Wool RP, Sun XS, eds. Bio-Based Polymers and Composites. Academic Press; 2005: 551-598. doi:10.1016/B978-012763952-9/50017-4
15.    Permata DA, Kasim A, Asben A, Yusniwati. Delignification of Lignocellulosic Biomass. World J Adv Res Rev. 2021; 12(2): 462-469. doi:10.30574/wjarr.2021.12.2.0618
16.    Bhandari K, Roy Maulik S, Bhattacharyya AR. Synthesis and Characterization of Microcrystalline Cellulose from Rice Husk. J Inst Eng India Ser E. 2020; 101(2): 99-108. doi:10.1007/s40034-020-00160-7
17.    Yunus MA, Raya I, Tuara ZI. Synthesis Cellulose From Rice Husk. Published online 2019.
18.    Zuliahani A, Hanani ASN, Nadhirah RN, Hazirah A. Isolation and Characterization of Microcrystalline Cellulose (MCC) From Rice Husk (RH) and Kenaf : A Comparison Study. Solid State Sci Technol. 2017; 25(2).
19.    Hafid HS, Omar FN, Zhu J, Wakisaka M. Enhanced Crystallinity and Thermal Properties of Cellulose From Rice Husk Using Acid Hydrolysis Treatment. Carbohydr Polym. 2021; 260: 117789. doi:10.1016/j.carbpol.2021.117789
20.    Ahmad Z, Roziaizan NN, Rahman R, Mohamad AF, Ismail WINW. Isolation and Characterization of Microcrystalline Cellulose (MCC) from Rice Husk (RH). Abd Rahman N, Mohd Jaini Z, Yunus R, Rahmat SN, eds. MATEC Web Conf. 2016; 47: 05013. doi:10.1051/matecconf/20164705013
21.    Hanani ASN, Zuliahani A, Nawawi WI, Razif N, Rozyanty AR. The Effect of Various Acids on Properties of Microcrystalline Cellulose (MCC) Extracted from Rice Husk (RH). IOP Conf Ser Mater Sci Eng. 2017; 204: 012025. doi:10.1088/1757-899X/204/1/012025
22.    Sim B, Bae DH, Choi HJ, Choi K, Islam MdS, Kao N. Fabrication and Stimuli Response of Rice Husk-Based Microcrystalline Cellulose Particle Suspension Under Electric Fields. Cellulose. 2016; 23(1): 185-197. doi:10.1007/s10570-015-0836-3
23.    Uwaezuoke O, Bamiro O, Ngwuluka N, Ajalla O, Okinbaloye A. Comparative Evaluation of the Disintegrant Properties of Rice Husk Cellulose, Corn Starch and Avicel in Metronidazole Tablet Formulation. J Appl Pharm Sci. Published online December 30, 2014. doi:10.7324/JAPS.2014.41219
24.    Ce U, Sa C, Ce I. Evaluation of Excipient Potentials of Alpha Cellulose Extracted from Rice Husk in Metronidazole Compressed Tablets: Colon Targeted Drug delivery and In vitro Characterizations. Published online 2019.
25.    Ohwoavworhua FO, Mitchell JW, Okhamafe AO. Rice Husk As a Sustainable Source of Microcrystalline cellulose: pharmacopoeial, crystalline and spectroscopic characteristics. Drug Discov. 2019; 13: 79-87.
26.    Bajpai P. Green Chemistry and Sustainability in Pulp and Paper Industry. Springer International Publishing; 2015. doi:10.1007/978-3-319-18744-0
27.    Tanis MH, Wallberg O, Galbe M, Al-Rudainy B. Lignin Extraction by Using Two-Step Fractionation: A Review. Molecules. 2023; 29(1): 98. doi:10.3390/molecules29010098
28.    Park J, Shin H, Yoo S, Zoppe JO, Park S. Delignification of Lignocellulosic Biomass and Its Effect on Subsequent Enzymatic Hydrolysis. BioResources. 2015; 10(2): 2732-2743. doi:10.15376/biores.10.2.2732-2743
29.    Tocco D, Garucci C, Monduzzi M, Salis A, Sanjust E. Recent Developments in the Delignification and Exploitation of Grass Lignocellulosic Biomass. ACS Publ. 2021; 9(6): 2412-2432. doi:https://doi.org/10.1021/acssuschemeng.0c07266
30.    Susi S, Ainuri M, Wagiman W, Falah MAF. Effect of Delignification and Bleaching Stages on Cellulose Purity of Oil Palm Empty Fruit Bunches. IOP Conf Ser Earth Environ Sci. 2022; 1116(1): 012018. doi:10.1088/1755-1315/1116/1/012018
31.    Irawan B, Darmawan A, Roesyadi A, Hari Prajitno D. Improving Reaction Selectivity with NaOH Charges and Reaction Time in The Medium Consistency Oxygen Delignification Process. Int J Technol. 2020; 11(4): 764. doi:10.14716/ijtech.v11i4.3499
32.    Supian MAF, Mohamad S, Amin KNM, et al. Effect of Different Bleaching Reagents and Process Sequences on The Properties of Steam-Exploded Empty Fruit Bunch (EFB) Fiber. IOP Conf Ser Mater Sci Eng. 2020; 778(1): 012015. doi:10.1088/1757-899X/778/1/012015
33.    Agnihotry A, Gill KS, Singhal D, Fedorowicz Z, Dash S, Pedrazzi V. A Comparison of the Bleaching Effectiveness of Chlorine Dioxide and Hydrogen Peroxide on Dental Composite. Braz Dent J. 2014; 25: 524-527. doi:10.1590/0103-6440201300098
34.    Vitasari D. The Effect of Ozone Concentration on The Bleached Pulp Properties. Published online 2008.
35.    Kaur D, Bhardwaj NK, Lohchab RK. Effect of Incorporation of Ozone Prior to ECF Bleaching on Pulp, Paper and Effluent Quality. J Environ Manage. 2019; 236: 134-145. doi:10.1016/j.jenvman.2019.01.089
36.    Gümüşkaya E, Usta M. Crystalline Structure Properties of Bleached and Unbleached Wheat Straw (Triticum Aestivum L.) Soda-Oxygen Pulp. Turk J Agric For. 2002; 26(5): 247-252.
37.    Santos SF, Tonoli GHD, Mejia JEB, Fiorelli J, Jr HS. Non-Conventional Cement-Based Composites Reinforced with Vegetable Fibers: A Review of Strategies to Improve Durability. Mater Constr. 2015; 65(317). doi:10.3989/mc.2015.05514
38.    Mangunwardoyo W, Lestari YPI, Suryadi H, Yanuar A, Suryadi H. Characterization of Kapok Pericarpium Microcrystalline Cellulose Produced of Enzymatic Hydrolysis Using Purified Cellulase From Termite (Macrotermes Gilvus). Int J Pharm Pharm Sci. Published online 2020: 7-14.
39.    Monschein M, Reisinger C, Nidetzky B. Enzymatic Hydrolysis of Microcrystalline Cellulose and Pretreated Wheat Straw: A Detailed Comparison Using Convenient Kinetic Analysis. Bioresour Technol. 2013; 128: 679-687. doi:10.1016/j.biortech.2012.10.129
40.    Raudhatussyarifah R, Sediawan WB, Azis MM, Hartati I. Microcrystalline Cellulose Production by Acid Hydrolysis of Hydrotropic Rice Straw Pulp. IOP Conf Ser Earth Environ Sci. 2022; 963(1): 012055. doi:10.1088/1755-1315/963/1/012055
41.    Karim MdZ, Chowdhury ZZ, Abd Hamid SB, Ali MdE. Statistical Optimization for Acid Hydrolysis of Microcrystalline Cellulose and Its Physiochemical Characterization by Using Metal Ion Catalyst. Materials. 2014; 7(10): 6982-6999. doi:10.3390/ma7106982
42.    Prayoga WNA, Aziz AA, Syahrir A, Pitaloka AB. Optimization of Microcrystalline Cellulose from Bagasse (Saccharum officinarum) by Acid Hydrolysis. World Chem Eng J. 2023; 7(2): 61-64. doi:10.36055/wcej.v7i2.23125
43.    Prosvirnikov D, Safin R, Zakirov SR. Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment. Solid State Phenom. 2018; 284: 773-778. doi:10.4028/www.scientific.net/SSP.284.773
44.    Ren H, Shen J, Pei J, et al. Characteristic Microcrystalline Cellulose Extracted by Combined Acid and Enzyme Hydrolysis of Sweet Sorghum. Cellulose. 2019; 26(15): 8367-8381. doi:10.1007/s10570-019-02712-6
45.    PubChem. Hydrochloric Acid. 2024. Accessed May 25, 2024. https://pubchem.ncbi.nlm.nih.gov/compound/313
46.    PubChem. Sulfuric Acid. 2024. Accessed May 25, 2024. https://pubchem.ncbi.nlm.nih.gov/compound/1118
47.    Wiyantoko B, Rusitasari R, Putri RN. Study of Hydrolysis Process from Pineapple Leaf Fibers using Sulfuric Acid, Nitric Acid, and Bentonite Catalysts. Bull Chem React Eng Catal. 2021; 16(3): 571-580. doi:10.9767/bcrec.16.3.10281.571-580
48.    Amin KNM, Hosseinmardi A, Martin DJ, Annamalai PK. A Mixed Acid Methodology to Produce Thermally Stable Cellulose Nanocrystal at High Yield Using Phosphoric Acid. J Bioresour Bioprod. 2022;7(2):99-108. doi:10.1016/j.jobab.2021.12.002
49.    Cen Y, Xiang Z, Han T, Long Y, Song T. Effect of Microfluidizing Cycles After Citric Acid Hydrolysis on The Production Yield and Aspect Ratio of Cellulose Nanocrystals. Cellulose. 2022; 29(13): 7193-7209. doi:10.1007/s10570-022-04725-0
50.    Hutomo GS, Rahim A, Kadir S. The Effect of Sulfuric and Hydrochloric Acid on Cellulose Degradation from Pod Husk Cacao. Int J Curr Microbiol Appl Sci. 2015; 4(10): 89095.
51.    Kassaye S, Pant KK, Jain S. Synergistic Effect of Ionic Liquid and Dilute Sulphuric Acid in the Hydrolysis of Microcrystalline Cellulose. Fuel Process Technol. 2016; 148: 289-294. doi:10.1016/j.fuproc.2015.12.032
52.    Ndé HS, Tamfuh PA, Clet G, Vieillard J, Mbognou MT, Woumfo ED. Comparison of HCl and H2SO4 for The Acid Activation of a Cameroonian Smectite Soil Clay: Palm Oil Discolouration and Landfill Leachate Treatment. Heliyon. 2019; 5(12): e02926. doi:10.1016/j.heliyon.2019.e02926
53.    Prosvirnikov DB, Safin RG, Zakirov SR. Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment. Solid State Phenom. 2018; 284: 773-778. doi:10.4028/www.scientific.net/SSP.284.773
54.    Nwachukwu N, Ofoefule SI. Effect of Drying Methods on The Powder and Compaction Properties of Microcrystalline Cellulose Derived from Gossypium herbaceum. Braz J Pharm Sci. 2020; 56: e18660. doi:10.1590/s2175-97902020000118060
55.    Belali NG, Chaerunisaa AY, Rusdiana T. Isolation and Characterization of Microcrystalline Cellulose Derived from Plants as Excipient in Tablet : A Review. Indones J Pharm. 2019; 1(2). doi:10.24198/idjp.v1i2.21515
56.    Sahoo S. Pharmaceutical Engineering. Institute of Pharmaceutical Science; 2020.
57.    Anthony JH, Ganderton D. Pharmaceutical Process Engineering. In: Vol 195. 2nd ed. Informa Healtcare; 2010:68-86.
58.    Nguyen X. Process for Preparing Microcrystalline Cellulose. Published online April 22, 2004. Accessed July 5, 2024. https://patents.google.com/patent/US20040074615A1/en
59.    Debnath B, Duarah P, Purkait MK. Microwave-Assisted Quick Synthesis of Microcrystalline Cellulose from Black Tea Waste (Camellia sinensis) and Characterization. Int J Biol Macromol. 2023; 244: 125354. doi:10.1016/j.ijbiomac.2023.125354
60.    Snehal W, Nitiin K. Microwave and Its Role in Pharmaceutical Sector : A Review. Int J Res Dev Pharm Life Sci. 2014; 3(5): 1128-1135.
61.    Al-Ali M, Salih KI, Alsamarrae A. Microwave Heating Temperatures and Pharmaceutical Powder Characteristics. Mater Today Proc. 2020; 20: 583-587. doi:10.1016/j.matpr.2019.09.193
62.    Mo W, Kong F, Chen K, Li B. Relationship Between Freeze-Drying and Supercritical Drying of Cellulosic Fibers With Different Moisture Contents Based On Pore And Crystallinity Measurements. Wood Sci Technol. 2022; 56(3): 867-882. doi:10.1007/s00226-022-01387-w
63.    Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose. 2013; 20(5): 2379-2392. doi:10.1007/s10570-013-0019-z
64.    Mo W, Li B, Chen K. Low-Temperature Thermal Drying-Induced Pore Expansion Effects of Cellulosic Fibers. Cellulose. 2023; 30(6): 3441-3453. doi:10.1007/s10570-023-05103-0


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available