Author(s): Pushpendra Kumar Khangar, Vivek Daniel

Email(s): pushpendra.rai16@gmail.com

DOI: 10.52711/0974-360X.2025.00575   

Address: Pushpendra Kumar Khangar1*, Vivek Daniel2
1Research Scholar, Oriental University, Indore, Opp. Reoti Range, Gate No.1, Jakhya, Sanwer Road, Indore, 453555, India.
2Professor, Oriental University, Indore, Faculty of Pharmacy, Opp. Reoti Range, Gate No.1, Jakhya, Sanwer Road, Indore, 453555, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 8,     Year - 2025


ABSTRACT:
Cancer resistance is a major problem affecting drug management in chemotherapy, which results to relapse and tumour regrowth. At present, alterations still occur and continue to pose a major problem because of genetic, epigenetic, proteomic, metabolic, microenvironment, and other causes. Multi walled carbon nanotubes will be another prospect towards surmounting this; resistance. These structures are based on carbon atoms arranged in hexagonal lattices; due to specific thermal and mechanical characteristics, they can be used as reinforcements. The possibility which lies in the application of nanoparticles to increase drug delivery and the effectiveness of the latter in cancer treatment indicates the need for the development of a new strategy for overcoming cancer resistance mechanisms. Thus, this review aims at revealing the potential of Multi walled carbon nanotubes in consideration of drug-resistant diseases and opening the discussion on the topic for further detailed investigation.


Cite this article:
Pushpendra Kumar Khangar, Vivek Daniel. Harnessing Multi-walled Carbon Nanotubes to Overcome Cancer Resistance: Utility and Challenges. Research Journal Pharmacy and Technology. 2025;18(8):4001-6. doi: 10.52711/0974-360X.2025.00575

Cite(Electronic):
Pushpendra Kumar Khangar, Vivek Daniel. Harnessing Multi-walled Carbon Nanotubes to Overcome Cancer Resistance: Utility and Challenges. Research Journal Pharmacy and Technology. 2025;18(8):4001-6. doi: 10.52711/0974-360X.2025.00575   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-78


10. REFERENCES: 
1.    PV Shekhar M. Drug resistance: challenges to effective therapy. Current Cancer Drug Targets. 2011; 11(5): 613–23. doi.org/10.2174/156800911795655921
2.    Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy. Biochemical Pharmacology. 2013; 85(9): 1219–26. doi.org/10.1016/j.bcp.2013.02.017
3.    Ward RA, et al. Challenges and opportunities in cancer drug resistance. Chemical Reviews. 2020; 121(6): 3297–351. doi.org/10.1021/acs.chemrev.0c00383
4.    Jiménez-Alonso JJ, López-Lázaro M. Dietary manipulation of amino acids for cancer therapy. Nutrients. 2023; 15(13): 2879. doi.org/10.3390/nu15132879
5.    Singal S. et al Immunoassay for troponin I using a glassy carbon electrode modified with a hybrid film consisting of graphene and multi-walled carbon nanotubes and decorated with platinum nanoparticles. Microchimica Acta. 2016; Nov 19; 183(4): 1375–84. doi.org/10.1007/s00604-016-1759-x
6.    Makwana M V, Patel AM. Multiwall carbon nanotubes: A review on synthesis and applications. Nanoscience and Nanotechnology-Asia. 2022; June 22; 12(3): 3–15. doi.org/10.2174/2210681211666211013112929
7.    Srinivasan V. et al. A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications. International Nano Letters. 2021; March; 11(4): 321–45. doi.org/10.1007/s40089-021-00328-y
8.    Yadav AR, Mohite SK. Carbon nanotubes as an effective solution for cancer therapy. Research journal of pharmaceutical dosage forms and technology. 2021; Feb 10; 12(4): 301–7. doi.org/10.5958/0975-4377.2020.00050.6
9.    Al-Rub RKA. et al. On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Construction and Building Materials. 2012; 35: 647–55. doi.org/10.1016/j.conbuildmat.2012.04.086
10.    Karimi M. et al. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opinion on Drug Delivery. 2015; Jan 22; 12(7): 1089–105. doi.org/10.1517/17425247.2015.1004309
11.    Nag MK tar. et al. Lung cancer getting: a review. Research Journal of Pharmacy and Technology. 2013; 6(11): 1302–6. doi.org/ 10.5958/0974-360X
12.    Vasan N. et al. A view on drug resistance in cancer. Nature. 2019; Nov 13; 575(7782): 299–309. doi.org/10.1038/s41586-019-1730-1
13.    Kelderman S. et al. Acquired and intrinsic resistance in cancer immunotherapy. Molecular Oncology. 2014; 8(6): 1132–9. doi.org/10.1016/j.molonc.2014.07.011
14.    Yaacoub K. et al. Role of the tumor microenvironment in regulating apoptosis and cancer progression. Cancer letters. 2016; Aug 10; 378(2): 150–9. doi.org/10.1016/j.canlet.2016.05.012
15.    Runa F. et al. Tumor microenvironment heterogeneity: challenges and opportunities. Current Molecular Biology Reports. 2017; Dec; 3: 218–29. doi.org/10.1007/s40610-017-0073-7
16.    Simiczyjew A. et al. The influence of tumor microenvironment on immune escape of melanoma. International Journal of Molecular Sciences. 2020; Nov 7; 21(21): 8359. doi.org/10.3390/ijms21218359
17.    Junttila MR, De Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013; Sep 19; 501(7467): 346-54. doi.org/10.1038/nature12626
18.    Baghban R. et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling. 2020; Apr 07; 18: 1–19. doi.org/10.1186/s12964-020-0530-4
19.    Khalaf K. et al. Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Frontiers in immunology. 2021; May 27; 12: 656364. doi.org/10.3389/fimmu.2021.656364
20.    Duan C. et al. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomedicine and Pharmacotherapy. 2023; June; 162: 114643. doi.org/10.1016/j.biopha.2023.114643
21.    Hevia LG, Fanarraga ML. Microtubule cytoskeleton-disrupting activity of MWCNTs: applications in cancer treatment. Journal of Nanobiotechnology. 2020; Dec.; 18(1): 181. doi.org/10.1186/s12951-020-00742-y
22.    Selvakumar S. et al. Current Advances on Biomedical Applications and Toxicity of MWCNTs: A Review. Bionanoscience. 2023; Jun; 13(2): 860–78. doi.org/10.1007/s12668-023-01110-4
23.    Bhansali D. et al. Comparative Analysis of Nucleic Acid-Binding Polymers as Potential Anti-Inflammatory Nanocarriers. Pharmaceutics. 2023; Dec 20; 16(1): 10. doi.org/10.3390/pharmaceutics16010010
24.    Zare H. et al. Carbon nanotubes: Smart drug/gene delivery carriers. International Journal of Nanomedicine. 2021; Mar 1: 1681-706. doi.org/10.2147/IJN.S299448
25.    Torrik A. et al. Doxorubicin and Imatinib co-drug delivery using non-covalently functionalized carbon nanotube: Molecular dynamics study. Journal of Molecular Liquids. 2022; Sep 15; 362: 119789. doi.org/10.1016/j.molliq.2022.119789
26.    Dubey R. et al. Functionalized carbon nanotubes: synthesis, properties, and applications in water purification, drug delivery, and material and biomedical sciences. Nanoscale Advances. 2021; March 1; 3(20): 5722–44. doi.org/10.1039/D1NA00293G
27.    Adeli M. et al. Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chemical Society Reviews. 2013; Feb 26; 42(12): 5231–56. doi.org/10.1039/C3CS35431H
28.    Marega R. et al. Functionalized Fe‐filled multiwalled carbon nanotubes as multifunctional scaffolds for magnetization of cancer cells. Advanced Functional Materials. 2013; Jan 29; 23(25): 3173–84. doi.org/10.1002/adfm.201202898
29.    Rahamathulla M. et al. Carbon nanotubes: Current perspectives on diverse applications in targeted drug delivery and therapies. Materials. 2021; Nov 7; 14(21): 6707. doi.org/10.3390/ma14216707
30.    Son KH. et al. Carbon nanotubes as cancer therapeutic carriers and mediators. International Journal of Nanomedicine. 2016; Oct 7;5163–85. doi.org/10.2147/IJN.S112660
31.    Saleem J. et al. Carbon‐based nanomaterials for cancer therapy via targeting tumor microenvironment. Advanced Healthcare Material. 2018; 7(20): 1800525. doi.org/10.1002/adhm.201800525
32.    Liu Y. et al. Understanding the toxicity of carbon nanotubes. Accounts of Chemical Research. 2013; Sept 21; 46(3): 702–13. doi.org/10.1021/ar300028m
33.    Qi W. et al. Curing the toxicity of multi-walled carbon nanotubes through native small-molecule drugs. scientific reports. 2017; June 06; 7(1): 2815. doi.org/10.1038/s41598-017-02770-5
34.    Addo Ntim S.et al. Aggregation behaviour of carbon nanotubes in aqueous and physiological media and its influence on toxicity. International Journal of Biomedical Nanoscience and Nanotechnology. 2013; June 19; 3(1–2): 84–106. doi.org/10.1504/IJBNN.2013.054510
35.    Mallakpour S, Soltanian S. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Advances. 2016; Nov 11; 6(111): 109916–35. doi.org/10.1039/C6RA24522F
36.    David ME et al. Biocompatible and antimicrobial cellulose acetate-collagen films containing MWCNTs decorated with TiO2 nanoparticles for potential biomedical applications. Nanomaterials. 2022; Jan 12; 12(2): 239. doi.org/10.3390/nano12020239
37.    Suhas K, Murthy BRN. Preparation and Characterization Techniques of High-Density Polyethylene (HDPE) Reinforced with Multi-walled Carbon Nanotube (MWCNT) Nano-composites—A Review. Journal of The Institution of Engineers (India). 2023 November 06; doi.org/10.1007/s40033-023-00576-6
38.    Das R. et al. Carbon nanotubes characterization by X-ray powder diffraction–a review. Current Nanoscience. 2015; Feb; 11(1): 23–35. doi.org/10.2174/1573413710666140818210043
39.    Murjani BO. et al. Carbon nanotubes in biomedical applications: current status, promises, and challenges. Carbon Letters. 2022; July 04; 32(5): 1207–26. doi.org/10.1007/s42823-022-00364-4
40.    Ren X. et al. Investigating the Influence of Diverse Functionalized Carbon Nanotubes as Conductive Fibers on Paper-Based Sulfur Cathodes in Lithium-Sulfur Batteries. Nanomaterials. 2024; March 07; 14(6): 484. doi.org/10.3390/nano14060484
41.    Ruzer LS. Exposure and dose: health effect studies associated with nanometer aerosols. Journal of Nanomedicine and Nanotechnology. 2011; Dec 1; 2(7): 2–9. doi.org/10.4172/2157-7439.1000120
42.    Wardak A. et al. Environmental Regulation of Nanotechnology and the TSCA. IEEE Technology and Society Magazine. 2007; Aug 27; 26(2): 48–56. doi.org/ 10.1109/MTAS.2007.4295056
43.    Powers CM. et al. Sparking connections: Toward better linkages between research and human health policy—an example with multiwalled carbon nanotubes. Toxicological Sciences. 2014; Sept 12; 141(1): 6–17. doi.org/10.1093/toxsci/kfu117
44.    Sireesha M. et al. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites. 2018; Sept 22; 4(2): 36–57. doi.org/10.1080/20550324.2018.1478765
45.    Pandian R, Kumari L. CT image for lung cancer identification. Research Journal of Pharmacy and Technology. 2016; 9(12): 2359–61. doi.org/10.5958/0974-360X.2016.00471.6
46.    Singh R, Deshmukh R. Carbon nanotube as an emerging theranostic tool for oncology. Journal of Drug Delivery Science and Technology. 2022; Aug 1; 74: 103586. doi.org/10.1016/j.jddst.2022.103586
47.    Raphey VR. et al. Advanced biomedical applications of carbon nanotube. Materials Science and Engineering: C. 2019; July; 100: 616–30. doi.org/10.1016/j.msec.2019.03.043
48.    Wang X. et al. MWCNT-mediated combinatorial photothermal ablation and chemo-immunotherapy strategy for the treatment of melanoma. Journal of Materials Chemistry B. 2020; March 25; 8(19): 4245–58. doi.org/10.1039/C9TB02238D
49.    Mostafavi E, Zare H. Carbon-based nanomaterials in gene therapy. OpenNano. 2022; July 1; 7: 100062. https://doi.org/10.1016/j.onano.2022.100062
50.    Al-Hyali RH, Al-Taee AT. A New GE/MWCNTs/PFA modified electrode for simultaneous determination of catechol and hydroquinone. Research Journal of Pharmacy and Technology. 2021; 14(2): 828–32. doi.org/ 10.5958/0974-360X.2021.00146.3
51.    Shibaguchi H. et al. Enhancement of the Antitumor Effect on Combination Therapy of an Anticancer Drug and Its Antibody against Carcinoembryonic Antigen. Chemotherapy. 2012; Apr 11; 58(2): 110. doi.org/10.1159/000337068
52.    Ravi Kiran AVVV. et al. Carbon nanotubes in drug delivery: Focus on anticancer therapies. Journal of Drug Delivery Science and Technology. 2020; October; 59: 101892. doi.org/10.1016/j.jddst.2020.101892
53.    Kushwaha SKS. et al. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Brazilian Journal of Pharmaceutical Sciences. 2013; Dec; 49: 629–43. doi.org/10.1590/S1984-82502013000400002
54.    Kiran AR.et al. Carbon nanotubes in drug delivery: Focus on anticancer therapies. Journal of Drug Delivery Science and Technology. 2020; 59: 101892. doi.org/10.1016/j.jddst.2020.101892
55.    García‐Hevia L. et al. Multiwalled carbon nanotubes inhibit tumor progression in a mouse model. Advanced healthcare materials. 2016; Feb 11; 5(9): 1080–7. doi.org/10.1002/adhm.201500753
56.    Naief MF. et al. Carbon nanotubes: A review on synthesis and drug delivery for cancer treatment. Inorganic Chemistry Communications. 2024; Jan; 111694. doi.org/10.1016/j.inoche.2023.111694
57.    Seifalian AM. et al. A New Era of Cancer Treatment: Carbon Nanotubes as Drug Delivery Tools. International journal of nanomedicine. 2011; Nov 22; 6: 2963. doi.org/10.2147/IJN.S16923
58.    Dong X. et al. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomedicine: Nanotechnology, Biology and Medicine. 2017; October; 13(7): 2271–80. doi.org/10.1016/j.nano.2017.07.002




Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available