ABSTRACT:
Ribosome-inactivating proteins have been discovered in bacteria, fungi, algae, and plants (RIPs). Because of N-glycosylase activity, RIPs cleavage adenine residues at a conserved site on the 28S rRNA.The cleavage of this single N-glycoside bond inhibits protein synthesis because it interferes with the elongation factors’ ability to associate with the ribosome. MAP30 is an anti-HIV plant protein from bitter melon. It has anti-tumor properties, topological inactivation of viral DNA, suppression of viral integrase, and cell-free ribosome inactivation. Riproximin was used to treat colorectal cancer. Riproximin is isolated from Ximenia Americana which is a type 2 RIP. MAP30 has more therapeutic potential than other RIPs since it is not only effective against HSV and HIV infection and replication, but it is also nontoxic to normal cells. Ribosome-inactivating proteins to obtain resistance against fungal pathogens are based on the ability of some RIPs to depurinate the ribosome of various fungi. Soybean toxin (SBTX) is a toxin produced by soybeans that is harmful to pathogenic fungi and yeast.
Cite this article:
Hemshankar Sahu Ujjwala Supe, Nikita Mishra. Ribosome inactivating protein in medicinal plant (Bryonia). Research Journal Pharmacy and Technology. 2025;18(8):4024-1. doi: 10.52711/0974-360X.2025.00578
Cite(Electronic):
Hemshankar Sahu Ujjwala Supe, Nikita Mishra. Ribosome inactivating protein in medicinal plant (Bryonia). Research Journal Pharmacy and Technology. 2025;18(8):4024-1. doi: 10.52711/0974-360X.2025.00578 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-8-81
REFERENCES:
1. Pizzo E, Di Maro A. A new age for biomedical applications of Ribosome Inactivating Proteins (RIPs): from bioconjugate to nanoconstructs. J Biomed Sci. 2016; 23(1): 54. Published 2016 Jul 20. doi:10.1186/s12929-016-0272-1
2. Stripe F. Ribosome-inactivating proteins. Toxicon. 2004; 44(4): 371-383. https://doi.org/10.1016/j.toxicon.2004.05.004.
3. Puri M, Kaur I, Perugini MA, Gupta RC. Ribosome-inactivating proteins: current status and biomedical applications. Drug Discov Today. 2012; 17(13-14): 774-783. doi:10.1016/j.drudis.2012.03.007
4. Stirpe F, Barbieri L. Ribosome-inactivating proteins up to date. FEBS Lett. 1986; 195(1-2): 1-8. doi:10.1016/0014-5793(86)80118-1
5. Walsh TA, Morgan AE, Hey TD. Characterization and molecular cloning of a proenzyme form of a ribosome-inactivating protein from maize. Novel mechanism of proenzyme activation by proteolytic removal of a 2.8-kilodalton internal peptide segment. J Biol Chem. 1991; 266(34): 23422-23427.
6. Chaudhry B, Müller-Uri F, Cameron-Mills V, et al. The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J. 1994; 6(6): 815-824. doi:10.1046/j.1365-313x.1994.6060815.x
7. Wong JH, Bao H, Ng TB, et al. New ribosome-inactivating proteins and other proteins with protein synthesis–inhibiting activities. Applied Microbiology and Biotechnology. 2020; 104(10): 4211-4226. doi:10.1007/s00253-020-10457-7.
8. Nielsen K, Boston RS. Ribosome-inactivating proteins: A plant perspective. Annual Review of Plant Physiology and Plant Molecular Biology. 2001; 52: 785-816. doi: 10.1146/annurev.arplant.52.1.785
9. Mundy J, Leah R, Boston R, et al. Genes encoding ribosome-inactivating proteins. Plant Molecular Biology Reporter. 1994;12(Suppl 1): S60-S62. doi:10.1007/BF02671573
10. Giansanti F, Leandro LD, Koutris I, et al. Ricin and saporin: Plant enzymes for the research and the clinics. Current Chemical Biology. 2010; 4(2): 99-107. doi:10.2174/187231310791170801
11. Bergamaschi G, Perfetti V, Tonon L, et al. Saporin, a ribosome-inactivating protein used to prepare immunotoxins, induces cell death via apoptosis. Br J Haematol. 1996; 93(4): 789-794. doi:10.1046/j.1365-2141.1996.d01-1730.x
12. Citores L, Ferreras JM. Biological Activities of Ribosome-Inactivating Proteins. Toxins (Basel). 2023; 15(1): 35. Published 2023 Jan 1. doi:10.3390/toxins15010035
13. Wang S, Li Z, Li S, Di C, Ho R, Yang G. Ribosome-inactivating proteins (RIPs) and their important health-promoting property. RSC Advances. 2016; 6: 46794-46805.
14. Lapadula WJ, Ayub MJ. Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon. 2017; 136: 6-14. doi:10.1016/j.toxicon.2017.06.012
15. Peumans WJ, Van Damme EJM. Evolution of plant ribosome-inactivating proteins. In: Lord J, Hartley M, eds. Toxic Plant Proteins. Plant Cell Monographs. Vol 18. Springer; 2010: 1-24. doi:10.1007/978-3-642-12176-0_1
16. Klei HF, Chang CY. Bryodin Type I RIP. Biochemistry. 1997; 36: 3095-3103.
17. Barbieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes. 1993; 1154(3-4): 237-282. doi:10.1016/0304-4157(93)90002-6
18. Stirpe F, Gasperi-Campani A, Barbieri L, Falasca A, Abbondanza A, Stevens WA. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem J. 1983; 216(3): 617-625. doi:10.1042/bj2160617
19. Stirpe, F., Williams, D. G., Onyon, L. J., Legg, R. F., & Stevens, W. A. (1981). Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). The Biochemical journal, 195(2), 399–405. https://doi.org/10.1042/bj1950399
20. Kishida K, Masuho Y, Hara T. Protein-synthesis inhibitory protein from seeds of Luffa cylindrica Roem. FEBS Letters. 1983; 153(1): 209-212.
21. Singh V, Singh RC, Dubey RK, Alam A. Purification and characterisation of gelonin from seeds of Gelonium multiflorum. Indian J Biochem Biophys. 1999; 36(4): 258-265.
22. Massiah AJ, Hartley MR. Wheat ribosome-inactivating proteins: seed and leaf forms with different specificities and cofactor requirements. Planta. 1995; 197(4): 633-640. doi:10.1007/BF00191571
23. Irvin JD. Pokeweed antiviral protein. Pharmacol. Ther. 1983; 21: 271-387.
24. Van Damme EJM, Hao Q, Chen Y, et al. Ribosome-inactivating proteins: A family of plant proteins that do more than inactivate ribosomes. Critical Reviews in Plant Sciences. 2001; 20(5): 395-465. doi:10.1080/07352689.2001.10131826
25. Olsnes S, Pihl A. Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis. Biochemistry. 1973; 12(16): 3121-3126. doi:10.1021/bi00740a028
26. Olsnes S, Stirpe F, Sandvig K, Pihl A. Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe). J Biol Chem. 1982; 257(22): 13263-13270.
27. Mishra V, Sharma RS, Yadav S, Babu CR, Singh TP. Purification and characterization of four isoforms of Himalayan mistletoe ribosome-inactivating protein from Viscum album having unique sugar affinity. Arch Biochem Biophys. 2004; 423(2): 288-301. doi:10.1016/j.abb.2003.12.033
28. Bortolotti M, Maiello S, Ferreras JM, Iglesias R, Polito L, Bolognesi A. Kirkiin: A New Toxic Type 2 Ribosome-Inactivating Protein from the Caudex of Adenia kirkii. Toxins (Basel). 2021; 13(2): 81. Published 2021 Jan 22. doi:10.3390/toxins13020081
29. He WJ, Liu WY. Cinnamomin: a multifunctional type II ribosome-inactivating protein. Int J Biochem Cell Biol. 2003; 35(7): 1021-1027. doi:10.1016/s1357-2725(02)00269-8
30. Bass HW, Webster C, OBrian GR, Roberts JK, Boston RS. A maize ribosome-inactivating protein is controlled by the transcriptional activator Opaque-2. Plant Cell. 1992; 4(2): 225-234. doi:10.1105/tpc.4.2.225
31. Mark ANS, Wong YT, Young JA, Cha SS, Sze KH, Au SWN, Wong KB, Shaw PC.Crystal structure of active ribosome-inactivating protein from maize (b-32). Nucleic acid Research. 2007; 35(17): 6259-6267. PDB DOI: https://doi.org/10.2210/pdb2PQI/pdb
32. Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K, Parthier B. JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci U S A. 1994; 91(15): 7012-7016. doi:10.1073/pnas.91.15.7012
33. Kataoka J, Habuka N, Miyano M, et al. Nucleotide sequence of cDNA encoding α-luffin, a ribosome-inactivating protein from Luffa cylindrica. Plant Molecular Biology. 1992; 18(6): 1199-1202. doi:10.1007/BF00047727
34. Lee-Huang S, Huang PL, Chen HC, et al. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene. 1995; 161(2): 151-156. doi:10.1016/0378-1119(95)00186-a
35. Fan JM, Luo J, Xu J, et al. Effects of recombinant MAP30 on cell proliferation and apoptosis of human colorectal carcinoma LoVo cells. Mol Biotechnol. 2008; 39(1): 79-86. doi:10.1007/s12033-008-9034-y
36. Xiong SD, Yu K, Liu XH, et al. Ribosome-inactivating proteins isolated from dietary bitter melon induce apoptosis and inhibit histone deacetylase-1 selectively in premalignant and malignant prostate cancer cells [published correction appears in Int J Cancer. 2009 Oct 15;125(8):1995]. Int J Cancer. 2009; 125(4): 774-782. doi:10.1002/ijc.24325
37. Puri M, Kaur I, Kanwar RK, Gupta RC, Chauhan A, Kanwar JR. Ribosome inactivating proteins (RIPs) from Momordica charantia for anti viral therapy. Curr Mol Med. 2009; 9(9): 1080-1094. doi:10.2174/156652409789839071
38. Fuchs H. Dianthin and Its Potential in Targeted Tumor Therapies. Toxins (Basel). 2019; 11(10): 592. Published 2019 Oct 11. doi:10.3390/toxins11100592
39. Chen S, Lóssio CF, Verbeke I, et al. The type-1 ribosome-inactivating protein OsRIP1 triggers caspase-independent apoptotic-like death in HeLa cells. Food Chem Toxicol. 2021; 157: 112590. doi:10.1016/j.fct.2021.112590
40. Rotondo R, Ragucci S, Castaldo S, et al. Cytotoxicity Effect of Quinoin, Type 1 Ribosome-Inactivating Protein from Quinoa Seeds, on Glioblastoma Cells. Toxins (Basel). 2021; 13(10): 684. Published 2021 Sep 25. doi:10.3390/toxins13100684
41. Girbés T, Citores L, Iglesias R, et al. Ebulin 1, a nontoxic novel type 2 ribosome-inactivating protein from Sambucus ebulus L. leaves. J Biol Chem. 1993; 268(24): 18195-18199.
42. Mishra V, Ethayathulla AS, Paramasivam M, Singh G, Yadav S, Kaur P, Sharma RS, Babu CR, Singh TP. Crystal Structure of a novel form of mistletoe lectin from Himalayan Viscum album L at 3.8A resolution. Acta Crystallographica Section D. Biological Crystallograography. 2004; 60(12): 2295-2304.
43. Citores L, Ferreras JM, Muñoz R, Benítez J, Jiménez P, Girbés T. Targeting cancer cells with transferrin conjugates containing the non-toxic type 2 ribosome-inactivating proteins nigrin b or ebulin l. Cancer Lett. 2002; 184(1): 29-35. doi:10.1016/s0304-3835(02)00169-6
44. Voss C, Eyol E, Frank M, von der Lieth CW, Berger MR. Identification and characterization of riproximin, a new type II ribosome-inactivating protein with antineoplastic activity from Ximenia americana. FASEB J. 2006; 20(8): 1194-1196. doi:10.1096/fj.05-5231fje
45. Citores L, Iglesias R, Ferreras JM. Antiviral Activity of Ribosome-Inactivating Proteins. Toxins (Basel). 2021; 13(2): 80. Published 2021 Jan 22. doi:10.3390/toxins13020080
46. Arslan I, Aydin O, Birdal P. Naturally occurring ribosome-inactivating proteins might be key molecules against COVID-19. In: 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT); 2021: 624-627. doi:10.1109/ISMSIT52890.2021.9604711
47. Byers VS, Levin AS, Malvino A, Waites L, Robins RA, Baldwin RW. A phase II study of effect of addition of trichosanthin to zidovudine in patients with HIV disease and failing antiretroviral agents. AIDS Res Hum Retroviruses. 1994; 10(4): 413-420. doi:10.1089/aid.1994.10.413
48. Ng YM, Yang Y, Sze KH, Zhang X, Zheng YT, Shaw PC. Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica). J Struct Biol. 2011; 174(1): 164-172. doi:10.1016/j.jsb.2010.12.007
49. Lee JH, Culver G, Carpenter S, Dobbs D. Analysis of the EIAV Rev-responsive element (RRE) reveals a conserved RNA motif required for high affinity Rev binding in both HIV-1 and EIAV. PLoS One. 2008; 3(6): e2272. Published 2008 Jun 4. doi:10.1371/journal.pone.0002272
50. Min KA, He H, Yang VC, Shin MC. Construction and characterization of gelonin and saporin plasmids for toxic gene-based cancer therapy. Arch Pharm Res. 2016; 39(5): 677-686. doi:10.1007/s12272-016-0739-3
51. Ding GB, Wu G, Li B, Yang P, Li Z. High-yield expression in Escherichia coli, biophysical characterization, and biological evaluation of plant toxin gelonin. 3 Biotech. 2019; 9(1): 19. doi:10.1007/s13205-018-1559-6
52. Asrorov AM, Gu Z, Min KA, Shin MC, Huang Y. Advances on Tumor-Targeting Delivery of Cytotoxic Proteins. ACS Pharmacol Transl Sci. 2019; 3(1): 107-118. Published 2019 Dec 30. doi:10.1021/acsptsci.9b00087
53. Wu J, Guo Q, Zhang G, et al. Study on the targeted therapy of oral squamous cell carcinoma with a plasmid expressing PE38KDEL toxin under control of the SERPINB3 promoter. Cancer Med. 2020; 9(6): 2213-2222. doi:10.1002/cam4.2880
54. Ardini M, Vago R, Fabbrini MS, Ippoliti R. From Immunotoxins to Suicide Toxin Delivery Approaches: Is There a Clinical Opportunity?. Toxins (Basel). 2022; 14(9): 579. Published 2022 Aug 23. doi:10.3390/toxins14090579
55. Filipovich AH, Vallera DA, Youle RJ, Quinones RR, Neville DM Jr, Kersey JH. Ex-vivo treatment of donor bone marrow with anti-T-cell immunotoxins for prevention of graft-versus-host disease. Lancet. 1984; 1(8375): 469-472. doi:10.1016/s0140-6736(84)92847-2
56. Thorpe PE, Brown AN, Bremner JA Jr, Foxwell BM, Stirpe F. An immunotoxin composed of monoclonal anti-Thy 1.1 antibody and a ribosome-inactivating protein from Saponaria officinalis: potent antitumor effects in vitro and in vivo. J Natl Cancer Inst. 1985; 75(1): 151-159.
57. Ramakrishnan S, Houston LL. Comparison of the selective cytotoxic effects of immunotoxins containing ricin A chain or pokeweed antiviral protein and anti-Thy 1.1 monoclonal antibodies. Cancer Res. 1984; 44(1): 201-208.
58. Masuho Y, Kishida K, Saito M, Umemoto N, Hara T. Importance of the antigen-binding valency and the nature of the cross-linking bond in ricin A-chain conjugates with antibody. J Biochem. 1982; 91(5): 1583-1591. doi:10.1093/oxfordjournals.jbchem.a133849
59. Thorpe PE, Brown AN, Ross WC, et al. Cytotoxicity acquired by conjugation of an anti-Thy1.1 monoclonal antibody and the ribosome-inactivating protein, gelonin. Eur J Biochem. 1981; 116(3): 447-454. doi:10.1111/j.1432-1033.1981.tb05356.x
60. Descotes G, Romano M, Stirpe F, Spreafico F. The immunological activity of plant toxins used in the preparation of immunotoxins--II. The immunodepressive activity of gelonin. Int J Immunopharmacol. 1985; 7(4): 455-463. doi:10.1016/0192-0561(85)90064-5
61. Spreafico F, Malfiore C, Moras ML, et al. The immunomodulatory activity of the plant proteins Momordica charantia inhibitor and pokeweed antiviral protein. Int J Immunopharmacol. 1983; 5(4): 335-343. doi:10.1016/0192-0561(83)90037-1
62. Vivanco JM, Savary BJ, Flores HE. Characterization of two novel type I ribosome-inactivating proteins from the storage roots of the andean crop Mirabilis expansa. Plant Physiol. 1999; 119(4): 1447-1456. doi:10.1104/pp.119.4.1447
63. Kumar R, Srivastava S, Prasad V. Genetic modification of crop plants with ribosome-inactivating protein genes for enhanced resistance to pathogens and pests. Journal of Plant Diseases and Protection. 2023; 130(5): 669-687. doi:10.1007/s41348-023-00713-z
64. Domashevskiy AV, Goss DJ. Pokeweed antiviral protein, a ribosome inactivating protein: activity, inhibition and prospects. Toxins (Basel). 2015; 7(2): 274-298. Published 2015 Jan 28. doi:10.3390/toxins7020274
65. Tumer NE, Hudak K, Di R, Coetzer C, Wang P, Zoubenko O. Pokeweed antiviral protein and its applications. Curr Top Microbiol Immunol. 1999; 240: 139-158. doi:10.1007/978-3-642-60234-4_7
66. Morais JK, Gomes VM, Oliveira JT, et al. Soybean toxin (SBTX), a protein from soybeans that inhibits the life cycle of plant and human pathogenic fungi. J Agric Food Chem. 2010; 58(19): 10356-10363. doi:10.1021/jf101688k
67. Wong JH, Wang HX, Ng TB. Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl Microbiol Biotechnol. 2008; 81(4): 669-674. doi:10.1007/s00253-008-1639-3
68. Park SW, Lawrence CB, Linden JC, Vivanco JM. Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiol. 2002; 130(1): 164-178. doi:10.1104/pp.000794
69. Wang S, Zhang Y, Liu H, et al. Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia. Appl Microbiol Biotechnol. 2012; 96(4): 939-950. doi:10.1007/s00253-012-3886-6
70. Berg K, Selbo PK, Prasmickaite L, et al. Photochemical internalization: a novel Technology for delivery of macromolecules into cytosol. Cancer Res. 1999; 59(6): 1180-1183.
71. Selbo PK, Sandvig K, Kirveliene V, Berg K. Release of gelonin from endosomes and lysosomes to cytosol by photochemical internalization. Biochim Biophys Acta. 2000; 1475(3): 307-313. doi:10.1016/s0304-4165(00)00082-9
72. Demirel S, Usta M, and Guller A. In silico Analysis of Ribosome-Inactivating Protein (Tritin) from Common Wheat Plants (Triticum aestivum L.). European Journal of Science and Technology. 2022; 33: 79-87. doi:10.31590/ejosat.1021686.
73. Mishra V, Mishra R, Shamra RS. Ribosome inactivating proteins - An unfathomed biomolecule for developing multi-stress tolerant transgenic plants. Int J Biol Macromol. 2022; 210: 107-122. doi:10.1016/j.ijbiomac.2022.05.004