Author(s):
Rachma Nurhayati, Asih Imulda Hari Purwani, Evi Kurniawati
Email(s):
rachma.nurhayati@iik.ac.id
DOI:
10.52711/0974-360X.2025.00594
Address:
Rachma Nurhayati*, Asih Imulda Hari Purwani, Evi Kurniawati
Faculty of Pharmacy, Bhakti Wiyata Institute of Health Sciences, Jl KH Wahid Hasyim 65 Kediri, East Java, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 9,
Year - 2025
ABSTRACT:
Background: Roselle flowers (Hibiscus sabdariffa L.) and butterfly pea flowers (Clitoria ternatea L.) are known for their antioxidant and antidiabetic activities. The combination of these flowers has the potential to be developed into a phytopharmaceutical. Cyanidin-3-O-glucoside (Cy3G's), a key compound in both flowers, is believed to play a significant role in these biological activities. However, the development of a reliable analytical method to detect this compound is essential for ensuring the quality of raw materials. Objective: This study aims to develop and validate a TLC-Densitometry method for determining Cy3G's levels in a combination of roselle and butterfly pea flower extracts, and to correlate the results with their antioxidant and antidiabetic activities. Methods: The research was conducted in three main stages: 1) Extract preparation using the maceration method, 2) Development and validation of a TLC-Densitometry analytical method for Cy3G's identification and quantification, and 3) Antioxidant activity testing using the DPPH method and antidiabetic activity testing based on the inhibition of the alpha-glucosidase enzyme. Results: The developed TLC-Densitometry method, using a mobile phase of n-butanol, acetic acid, and water (4:1:5 v/v/v), was validated and met the required parameters of specificity, linearity, accuracy, and precision. Results showed that butterfly pea flower extract had the highest Cy3G's content, followed by the combination extract and roselle extract. The strongest antioxidant activity was observed in butterfly pea flower extract (IC50 0,0979 mg/mL), categorized as strong, while the combination extract showed moderate antioxidant activity (IC50 0,1101 mg/mL). However, antidiabetic activity in all samples was weak. Conclusion: The developed TLC-Densitometry method can be used for determining Cy3G's levels in a combination of roselle and butterfly pea flower extracts. Butterfly pea flower extract demonstrated the greatest antioxidant potential, while antidiabetic activity was relatively weak across all samples.
Cite this article:
Rachma Nurhayati, Asih Imulda Hari Purwani, Evi Kurniawati. Method Development for Determination of Cyanidin-3-O-Glucoside Level in Combination of Roselle and Butterfly Pea Flower Extracts by TLC-Densitometry and its Correlation with Antidiabetic and Antioxidant Activities. Research Journal of Pharmacy and Technology. 2025;18(9):4133-0. doi: 10.52711/0974-360X.2025.00594
Cite(Electronic):
Rachma Nurhayati, Asih Imulda Hari Purwani, Evi Kurniawati. Method Development for Determination of Cyanidin-3-O-Glucoside Level in Combination of Roselle and Butterfly Pea Flower Extracts by TLC-Densitometry and its Correlation with Antidiabetic and Antioxidant Activities. Research Journal of Pharmacy and Technology. 2025;18(9):4133-0. doi: 10.52711/0974-360X.2025.00594 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-14
REFERENCES:
1. Rungkat Zakaria F, Prangdimurti E, Damanik R. The Effect of Roselle Extract (Hibiscus sabdariffa Linn.) On Blood Glucose Level And Total Antioxidant Level On Diabetic Rat Induced By Streptozotocin. IOSR J Pharm. 2014; 4(10): 8-16. www.iosrphr.org
2. Dianasari D, Fajrin A. Uji Aktivitas Antidiabetes Ekstrak Air Kelopak Bunga Rosella (Hibiscus sabdariffa L.) pada Tikus dengan Metode Induksi Aloksan Antidiabetic Activity Test of Flower Petals Roselle (Hibiscus sabdariffa L.) Water Extract in Rats With Alloxan Induction Method. J Pharm Sci Pharm Prac. 2015; 2.
3. Alegbe EO, Teralı K, Olofinsan KA, Surgun S, Ogbaga CC, Ajiboye TO. Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. J Food Biochem. 2019; 43(7). doi:10.1111/jfbc.12927
4. Bule M, Albelbeisi AH, Nikfar S, Amini M, Abdollahi M. The antidiabetic and antilipidemic effects of Hibiscus sabdariffa: A systematic review and meta-analysis of randomized clinical trials. Food Research International. 2020; 130. doi:10.1016/j.foodres.2020.108980
5. Minelko M, Gunawan AG, Ali S, Suwanto A, Yanti. Protein extracted from Clitoria ternatea modulates genes related to diabetes in vivo. nternational Food Research Journal. 2020; 27(4): 610-617.
6. Chayaratanasin P, Barbieri MA, Suanpairintr N, Adisakwattana S. Inhibitory effect of Clitoria ternatea flower petal extract on fructose-induced protein glycation and oxidation-dependent damages to albumin in vitro. BMC Complement Altern Med. 2015; 15(1). doi:10.1186/s12906-015-0546-2
7. Feni Indriyati Y, Dewi DN. Systematic Review: The Potential of Butterfly Pea Flower (Clitoria ternatea) as Antidiabetic. Generics : Journal of Research in Pharmacy Accepted : 4 Mei. 2022; 2(1).
8. Zahra S. M, Susilawati Y, Musfiroh I. Differentiation roselle (Hibiscus sabdariffa L.) extract from various plants with FTIR-chemometric method. Res J Pharm Technol. 2022: 878-884. doi:10.52711/0974-360X.2022.00147
9. Sahu M, Kumar V, Joshi V. Indian medicinal plants with antidiabetic potential: An overview. Res J Pharm Technol. 2021: 2328-2335. doi:10.52711/0974-360X.2021.00411
10. Nurhayati R, Shoviantari F, Erawati Munandar T, Yuwono M. Butterfly Pea (Clitoria ternatea L.) Flower Water and Ethanol Extract: Phytochemical Screening, FTIR Analysis, and Antioxidant Activity Estimation Using Comparison of ABTS, DPPH, and FRAP Assays. Res J Pharm Technol. 2024; 17(5).
11. Nurhayati R, Shoviantari F, Erawati Munandar T, Yuwono M. Butterfly Pea (Clitoria ternatea L.) Flower Water and Ethanol Extract: Phytochemical Screening, FTIR Analysis, and Antioxidant Activity Estimation using comparison of ABTS, DPPH, and FRAP Assays. Res J Pharm Technol. Published online 2024: 1973-1982. doi:10.52711/0974-360X.2024.00313
12. Rajamanickam M, Kalaivanan P, Sivagnanam I. Evaluation of anti-oxidant and anti-diabetic activity of flower extract of Clitoria ternatea L. J Appl Pharm Sci. 2015; 5(8): 131-138. doi:10.7324/JAPS.2015.50820
13. Olivas-Aguirre FJ, Rodrigo-García J, Martínez-Ruiz NDR, et al. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules. 2016; 21(9). doi:10.3390/molecules21091264
14. Inggrid M, Hartanto Y, Jesslyn D, Widjaja F. Karakteristik Antioksidan pada Kelopak Bunga Rosella (Hibiscus sabdariffa Linn.). Jurnal Rekayasa Hijau. 2018; 2(3).
15. Jia Y, Wu C, Kim YS, et al. A dietary anthocyanin cyanidin-3-O-glucoside binds to PPARs to regulate glucose metabolism and insulin sensitivity in mice. Commun Biol. 2020; 3(1). doi:10.1038/s42003-020-01231-6
16. Bartel I, Koszarska M, Strzałkowska N, et al. Cyanidin-3-O-glucoside as a Nutrigenomic Factor in Type 2 Diabetes and Its Prominent Impact on Health. Int J Mol Sci. 2023; 24(11). doi:10.3390/ijms24119765
17. Farmakope Herbal Indonesia Edisi Ii 2017 Kementerian Kesehatan Republik Indonesia 615.1 Ind f.
18. Das Sharma U, Kumar L, Verma R. Selection of Stationary Phase and Mobile Phase in High Performance Liquid Chromatography. Res J Pharm Technol. Published online September 28, 2022: 4325-4332. doi:10.52711/0974-360X.2022.00726
19. Bhole RP, Jagtap SR, Chadar KB, Zambare YB. Review on Hyphenation in HPTLC-MS. Res J Pharm Technol. 2020; 13(2): 1028. doi:10.5958/0974-360X.2020.00189.4
20. Manasa M, Aanandhi VM. Stability indicating method development and validation of semaglutide by RP-HPLC in pharmaceutical substance and pharmaceutical product. Res J Pharm Technol. 2021; 14(3): 1385-1389. doi:10.5958/0974-360X.2021.00247.X
21. K S A, Jose M, Kuriakose S, P M J. Phytochemical analysis and In vitro Antidiabetic activity of aqueous extract of Lagerstroemia speciosa and Aegle marmelos. Res J Pharm Technol. 2021: 4697-4701. doi:10.52711/0974-360X.2021.00816
22. Ponnanikajamideen M, Rajeshkumar S, Annadurai G. In Vivo Antidiabetic and In Vitro Antioxidant and Antimicrobial Activity of Aqueous Leaves Extract of Chamaecostus cuspidatus. Res J 2016; 9(8): 1204. doi:10.5958/0974-360X.2016.00230.4
23. Koes R, Verweij W, Quattrocchio F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005; 10(5): 236-242. doi:10.1016/j.tplants.2005.03.002
24. He J, Monica Giusti M. Anthocyanins: Natural colorants with health-promoting properties. Annu Rev Food Sci Technol. 2010; 1(1): 163-187. doi:10.1146/annurev.food.080708.100754
25. Yamin Y, Mistriyani M, Muhammad Fitrawan LO, Sabarudin S, Arba M. Free Radical Scavenging Activity of extract and fraction of Okra seeds determined by DPPH (2,2-diphenyl-1-picrylhydrazy) method. Res J Pharm Technol. 2021: 2045-2048. doi:10.52711/0974-360X.2021.00363
26. Sharma GK, Sharma S, Chasta P, Joshi RK, Tiwari A, Chandrul KK. Assessment of pharmacognostic parameters and antioxidant potential of bitter melon or karela (Momordica charantia L.) fruits by DPPH method. Res J Pharm Technol. 2021; 14(1): 437-441. doi:10.5958/0974-360X.2021.00079.2
27. Andriani D, Murtisiwi L. Uji Aktivitas Antioksidan Ekstrak Etanol 70% Bunga Telang (Clitoria Ternatea L) Dari Daerah Sleman Dengan Metode DPPH Antioxidant Activity Test of 70% Ethanol Extract of Telang Flower (Clitoria Ternatea L) from Sleman Area with DPPH Method. 1.; 2020. http://journals.ums.ac.id/index.php/pharmacon