Author(s):
Sri Rezeki, Diana Setya Ningsih, Subhaini Jakfar, Abdillah Imron Nasution, Basri A. Gani
Email(s):
iy_99fkg@usk.ac.id
DOI:
10.52711/0974-360X.2025.00596
Address:
Sri Rezeki1, Diana Setya Ningsih2, Subhaini Jakfar2, Abdillah Imron Nasution3, Basri A. Gani3
1Departemen of Oral Medicine, Faculty of Dentistry, Universitas Syiah Kuala, Darussalam, Banda Aceh, Indonesia.
1Departemen of Dental Material, Faculty of Dentistry, Universitas Syiah Kuala, Darussalam, Banda Aceh, Indonesia.
3Department of Oral Biology, Faculty of Dentistry, Universitas Syiah Kuala, Darussalam, Banda Aceh, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 9,
Year - 2025
ABSTRACT:
Candida albicans is a major pathogen causing biofilm formation and infections in the oral cavity. Alternative treatments using natural ingredients like Moringa oleifera and Ziziphus mauritiana with known antifungal activity are needed to address these infections. This study evaluates the tolerance response of M. oleifera and Z. mauritiana L to changes in C. albicans cell metabolism. The assessment includes growth inhibition, hydrophobicity by spectrophotometry, metabolite activity by MTT assay, phospholipase by precipitation test, and nucleic acid deformation and phospholipid content by FTIR. Results show significant inhibition of C. albicans growth at the highest concentration (400µg/mL), with M. oleifera displaying more potent inhibition than Z. mauritiana across all parameters. At 400µg/mL, M. oleifera inhibits phospholipase activity by 70%, close to the positive control (75%), while Z. mauritiana reaches 65%. FTIR analysis reveals significant nucleic acid deformation, indicating cellular damage. Furthermore, M. oleifera inhibits phospholipid release by 70%, compared to 65% for Z. mauritiana L, close to Fluconazole's effectiveness (75%). In the hydrophobicity test, M. oleifera shows a 60% inhibition of C. albicans cell hydrophobicity, higher than Z. mauritiana L (58%). These findings suggest both extracts hold antifungal potential, with M. oleifera demonstrating more potent inhibitory activity on various aspects of C. albicans metabolism.
Cite this article:
Sri Rezeki, Diana Setya Ningsih, Subhaini Jakfar, Abdillah Imron Nasution, Basri A. Gani. Response of Tolerance Moringa oleifera and Ziziphus mauritiana Lam to Metabolism Changes of Candida albicans Cell. Research Journal of Pharmacy and Technology. 2025;18(9):4144-2. doi: 10.52711/0974-360X.2025.00596
Cite(Electronic):
Sri Rezeki, Diana Setya Ningsih, Subhaini Jakfar, Abdillah Imron Nasution, Basri A. Gani. Response of Tolerance Moringa oleifera and Ziziphus mauritiana Lam to Metabolism Changes of Candida albicans Cell. Research Journal of Pharmacy and Technology. 2025;18(9):4144-2. doi: 10.52711/0974-360X.2025.00596 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-16
REFERENCES:
1. Rezeki S, Gani BA, Abdat M, et al. The measurement of Candida albicans Tolerance under the influence of Moringa oleifera. Research Journal of Pharmacy and Technology. 2023; 16(6): 2579-83. http://dx.doi.org/10.52711/0974-360X.2023.00423
2. Rezeki S, Hakim RF, Sunnati S, Salvinia S, Gani BA. The Oral Biology Parameter of the Diabetes Mellitus Type-2 Patients Relate to the Oral Candida Species Development. Journal of International Dental and Medical Research. 2022; 15(2): 757-65.
3. Gani BA, Soraya C, Sugiaman VK, et al. Fungistatic effect of Moringa oleifera Lam. on the metabolism changes of Candida albicans. Journal of Pharmacy & Pharmacognosy Research. 2023; 11(1): 179-90. http://dx.doi.org/10.56499/jppres22.1533_11.1.179
4. Gani BA, Bachtiar EW, Bachtiar BM. The role of cigarettes smoke condensate in enhanced Candida albicans virulence of salivary isolates based on time and temperature. Journal of International Dental and Medical Research. 2017; 10: 769-77.
5. Bachtiar BM, Gani BA, Deviana A, et al. The discrepancy between clove and non-clove cigarette smoke-promoted Candida albicans biofilm formation with precoating RNA-aptamer. F1000 Research 2021; 10. https://doi.org/10.12688/f1000research.52266.3
6. Campoy S, Adrio JL. Antifungals. Biochemical pharmacology 2017; 133: 86-96. https://doi.org/10.1016/j.bcp.2016.11.019
7. Jangid R. Antimycotic Activity of Leaf Extracts of Medicinal Plants Against Dermatophytes. Journal of Fungal Diversity 2020; 1(1): 33-40. http://dx.doi.org/10.14302/issn.2766-869X.jfd-20-3603
8. Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021; 9(10). https://doi.org/10.3390/microorganisms9102041
9. Soraya C, Batubara FY, Nasroen SL, Jakfar S, Gani BA. Role of Moringa oleifera irrigation solution on the cell metabolism change of Streptococcus mutans. Journal of Advanced Pharmaceutical Technology & Research 2024; 15(3): 200-07. https://doi.org/10.4103/JAPTR.JAPTR_442_23
10. Soraya C, Syafriza D, Gani BA. Antibacterial effect of Moringa oleifera gel to prevent the growth, biofilm formation, and cytotoxicity of Streptococcus mutans. Journal of International Dental and Medical Research. 2022; 15(3): 1053-61.
11. Fule S, Das D, Fule R. Detection of phospholipase activity of Candida albicans and non albicans isolated from women of reproductive age with vulvovaginal candidiasis in rural area. Indian Journal of Medical Microbiology. 2015; 33(1): 92-95. https://doi.org/10.4103/0255-0857.148392
12. Syafriza D, Rifki A, Yulina V, Gani BA. The Assessment of Metabolic Changes and Stress Response of Streptococcus Mutans Growth in Saliva by Fourier Transform Infra-Red. Journal of International Dental and Medical Research. 2022; 15(3): 1086-94.
13. Utmi Arma UA, Gani BA, Gani BA. Role of Ziziphus mauritiana Lam. on Oral Candidiasis and its Relation to the Antibody Response, Blood Electrolyte, and Liver Profil. Journal Of International Dental and Medical Research. 2022; 15(2): 561-70.
14. Rizki MI. Identification of active compound and Antibacterial activity against gram-positive and gram-negative bacteria of Chromolaena odorata leaf extract. Research Journal of Pharmacy and Technology. 2022; 15(10): 4720-26. http://dx.doi.org/10.52711/0974-360X.2022.00793
15. Janani M, Viswanathan D, Pandiaraj S, et al. Review on phyto-extract methodologies for procuring ZnO NPs and its pharmacological functionalities. Process Biochemistry 2024. http://dx.doi.org/10.1016/j.procbio.2024.08.015
16. Veni RK, Meenambiga S. In-silico analysis of endophytic fungal metabolites against secreted aspartic proteinase enzyme of Candida albicans. Research Journal of Pharmacy and Technology 2019; 12(7): 3495-500. https://doi.org/10.5958/0974-360X.2019.00594.8
17. Meenambiga S, Rajagopal K, Shevalkar M. Endophytic Fungi, A Novel source in the treatment of Oral infections. Research Journal of Pharmacy and Technology. 2020; 13(6): 2936-42. https://doi.org/10.5958/0974-360X.2020.00520.X
18. Soraya C, Alibasyah ZM, Nazar M, Gani BA. Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Research Journal of Pharmacy and Technology. 2022; 15(8): 3523-30. http://dx.doi.org/10.52711/0974-360X.2022.00591
19. Al Aboody MS, Mickymaray S. Antifungal efficacy and mechanisms of flavonoids. Antibiotics 2020; 9(2): 45. https://doi.org/10.3390/antibiotics9020045
20. Zhou X, Zeng M, Huang F, et al. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Applied Microbiology and Biotechnology. 2023; 107(14): 4471-92. https://doi.org/10.1007/s00253-023-12601-5
21. Basumatary S, Changmai N. Biological materials assisted synthesis of silver nanoparticles and potential applications: A review. Research Journal of Pharmacy and Technology. 2018; 11(6): 2681-94. https://doi.org/10.5958/0974-360X.2018.00497.3
22. Barman A, Gohain D, Bora U, Tamuli R. Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiological Research 2018; 209: 55-69. http://dx.doi.org/10.1016/j.micres.2017.12.012
23. Raja V, Ahmad S, Irshad M, et al. Anticandidal activity of ethanolic root extract of Juglans regia (L.): Effect on growth, cell morphology, and key virulence factors. Journal de Mycologie Medicale 2017; 27(4): 476-86. https://doi.org/10.1016/j.mycmed.2017.07.002
24. Loi M, Paciolla C, Logrieco AF, Mulè G. Plant bioactive compounds in pre-and postharvest management for aflatoxins reduction. Frontiers in Microbiology. 2020; 11: 243. https://doi.org/10.3389/fmicb.2020.00243
25. Wei L, Zhang Q, Xie A, et al. Isolation of bioactive compounds, antibacterial activity, and action mechanism of spore powder from Aspergillus niger xj. Frontiers in Microbiology. 2022; 13: 934857. https://doi.org/10.3389/fmicb.2022.934857
26. González-Ponce HA, Rincón-Sánchez AR, Jaramillo-Juárez F, Moshage H. Natural dietary pigments: potential mediators against hepatic damage induced by over-the-counter non-steroidal anti-inflammatory and analgesic drugs. Nutrients 2018; 10(2): 117. https://doi.org/10.3390/nu10020117
27. Mejia EM, Hatch GM. Mitochondrial phospholipids: role in mitochondrial function. Journal of bioenergetics and biomembranes. 2016; 48: 99-112. https://doi.org/10.1007/s10863-015-9601-4
28. Sant D, Tupe S, Ramana CV, Deshpande M. Fungal cell membrane—promising drug target for antifungal therapy. Journal of Applied Microbiology. 2016; 121(6): 1498-510. https://doi.org/10.1111/jam.13301
29. Silva-Gomes R, Caldeira I, Fernandes R, Cunha C, Carvalho A. Metabolic regulation of the host–fungus interaction: from biological principles to therapeutic opportunities. Journal of Leukocyte Biology. 2024; 116(3): 469-86. http://dx.doi.org/10.1093/jleuko/qiae045
30. Praveen N, Preetha RST, Pagare V, et al. Plant-based Metabolites as Source of Antimicrobial Therapeutics: Prospects and Challenges. Antimicrobials in Pharmaceutical and Medicinal Research 2023: 165-201. http://dx.doi.org/10.1201/9781003268932-9
31. Rodríguez B, Pacheco L, Bernal I, Piña M. Mechanisms of Action of Flavonoids: Antioxidant, Antibacterial and Antifungal Properties. Ciencia, Ambiente y Clima 2023; 6(2): 33-66. http://dx.doi.org/10.22206/cac.2023.v6i2.3021
32. Li Y, Shan M, Zhu Y, et al. Kalopanaxsaponin A induces reactive oxygen species mediated mitochondrial dysfunction and cell membrane destruction in Candida albicans. PLoS One 2020; 15(11): e0243066. https://doi.org/10.1371/journal.pone.0243066
33. Pezzotti G. Raman spectroscopy in cell biology and microbiology. Journal of Raman Spectroscopy 2021; 52(12): 2348-443.
34. Mickymaray S. Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics. 2019; 8(4): 257. http://dx.doi.org/10.1002/jrs.6204
35. Muadcheingka T, Tantivitayakul P. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: Correlation between cell surface hydrophobicity and biofilm forming activities. Archives of oral biology 2015; 60(6): 894-901. https://doi.org/10.1016/j.archoralbio.2015.03.002
36. Nobre TM, Pavinatto FJ, Caseli L, et al. Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Films 2015; 593: 158-88. http://dx.doi.org/10.1016/j.tsf.2015.09.047
37. Otzen DE. Biosurfactants and surfactants interacting with membranes and proteins: same but different? Biochimica et Biophysica Acta (BBA)-Biomembranes 2017; 1859(4): 639-49. https://doi.org/10.1016/j.bbamem.2016.09.024