Author(s):
Teguh Imanto, Nonni Soraya Sambudi, Khadijah Zai, Teuku Nanda Saifullah Sulaiman
Email(s):
tn_saifullah@ugm.ac.id
DOI:
10.52711/0974-360X.2025.00598
Address:
Teguh Imanto1,2, Nonni Soraya Sambudi3, Khadijah Zai4, Teuku Nanda Saifullah Sulaiman4*
1Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Gadjah Mada University, Indonesia.
2Department of Pharmaceutics, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Indonesia.
3Department of Chemical Engineering, Universitas Pertamina, Simprug, Jakarta 12220, Indonesia.
4Department of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 9,
Year - 2025
ABSTRACT:
This study aims to obtain raw materials with optimal characteristics for hydroxyapatite synthesis from bovine tibia bones by optimizing temperature and time in the bone extraction process using thermal decomposition. Bovine tibia bones were prepared into powder and extracted using a furnace at different temperatures and time factors. Using a factorial design, the extraction process was optimized at temperatures ranging from 600 to 1100°C and 2-6 hours of heating times. Responses to this optimization process included powder density, extraction yield, carbon (C) content, oxygen (O) content, calcium (Ca) content, and phosphorus (P) content in the extracted powder. The optimal temperature and time for the extraction process yielded the following response values: powder density of 0.926g/cm3, extraction yield of 64.9132%, C content of 3.772%, O content of 33.7829%, Ca content of 16.2654%, and P content of 5.8544%. Lack of fit results indicated non-significant values in testing for extraction yield, C content, O content, Ca content, and P content, suggesting insignificant differences between experimental data and predictions from the proposed model. The extraction process at 1100°C for 6 hours resulted in raw material with optimum characteristics for hydroxyapatite synthesis, enabling the production of high-quality biomaterials for bone tissue engineering.
Cite this article:
Teguh Imanto, Nonni Soraya Sambudi, Khadijah Zai, Teuku Nanda Saifullah Sulaiman. Optimizing Temperature and Time in Bovine Bone Extraction: A Novel approach to Enhanced Hydroxyapatite Production for Advanced Bone Tissue Engineering Applications. Research Journal of Pharmacy and Technology. 2025;18(9):4158-6. doi: 10.52711/0974-360X.2025.00598
Cite(Electronic):
Teguh Imanto, Nonni Soraya Sambudi, Khadijah Zai, Teuku Nanda Saifullah Sulaiman. Optimizing Temperature and Time in Bovine Bone Extraction: A Novel approach to Enhanced Hydroxyapatite Production for Advanced Bone Tissue Engineering Applications. Research Journal of Pharmacy and Technology. 2025;18(9):4158-6. doi: 10.52711/0974-360X.2025.00598 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-18
REFERENCES:
1. Wu AM, Bisignano C, James SL, et al. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Heal Longev. 2021; 2(9): 580-592. doi:10.1016/S2666-7568(21)00172-0
2. Janmohammadi M, Nazemi Z, Salehi AOM, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2023; 20(February 2022): 137-163. doi:10.1016/j.bioactmat.2022.05.018
3. Zhou Z, Feng W, Moghadas BK, et al. Review of recent advances in bone scaffold fabrication methods for tissue engineering for treating bone diseases and sport injuries. Tissue Cell. 2024; 88(March):102390. doi:10.1016/j.tice.2024.102390
4. K KO, L Z, A B, L B, N C. Elaboration and Physicochemical characterization of a Biomaterial for Bone Substitution. Asian J Res Chem. 2022. https://api.semanticscholar.org/CorpusID:247396307
5. Saputra G, Nugraha AP, Budhy TI, et al. Nanohydroxyapatite-chitosan hydrogel scaffold with platelet rich fibrin and buccal fat pad derived stem cell for aggressive periodontitis treatment: a narrative review. Res J Pharm Technol. 2022; 15(12):5903-5908.
6. Singh S, Pal A, Mohanty S. Nano Structure of Hydroxyapatite and its modern approach in Pharmaceutical Science. Res J Pharm Technol. 2019; 12(3): 1463-1472.
7. Kamadjaja MJK, Salim S, Subiakto BDS. Application of Hydroxyapatite scaffold from Portunus pelagicus on OPG and RANKL expression after tooth extraction of Cavia cobaya. Res J Pharm Technol. 2021; 14(9): 4647-4652.
8. Perdana S, Prahasanti C, Bargowo L, Prasetyo S, Riawan W. The Analysis of MMP-13 Expression on Hydroxyapatite Tooth Graft Application Compared to Hydroxyapatite Xenograft. Res J Pharm Technol. 2023: 261-265. doi:10.52711/0974-360X.2023.00048
9. Hartatiek, Yudyanto, Wuriantika MI, et al. Nanostructure, porosity and tensile strength of PVA/Hydroxyapatite composite nanofiber for bone tissue engineering. Mater Today Proc. 2020; 44: 3203-3206. doi:10.1016/j.matpr.2020.11.438
10. Shi H, Zhou Z, Li W, Fan Y, Li Z, Wei J. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals. 2021; 11(2): 1-18. doi:10.3390/cryst11020149
11. Rudraradhya V, Teja BV, Mukherjee D. Hydroxypropyl methylcellulose/sodium alginate/hydroxyapatite nano biomaterial enriched with zinc to promote bone tissue augmentation. J Mol Struct. 2024; 1310(January): 138282. doi:10.1016/j.molstruc.2024.138282
12. Wan L, Cui B, Wang L. A review on preparation raw materials, synthesis methods, and modifications of hydroxyapatite as well as their environmental applications. Sustain Chem Pharm. 2024; 38: 101447. doi:https://doi.org/10.1016/j.scp.2024.101447
13. Kuang Z, Dai G, Wan R, Gu H, Huang W. ScienceDirect Osteogenic and antibacterial dual functions of a novel levofloxacin loaded mesoporous silica microspheres / nano-hydroxyapatite / polyurethane composite scaffold. Genes Dis. 2021; 8(2): 193-202. doi:10.1016/j.gendis.2019.09.014
14. Yetri Y, Ikhsan, Indra A, Affi J, Gunawarman. Extraction of hydroxyapatite from bovine bones: The manufacturing development and its behavior properties towards acrylic resin/hydroxyapatite/alumina composites. Mater Chem Phys. 2024; 319(April): 129244. doi:10.1016/j.matchemphys.2024.129244
15. Malla KP, Regmi S, Nepal A, et al. Extraction and Characterization of Novel Natural Hydroxyapatite Bioceramic by Thermal Decomposition of Waste Ostrich Bone. Int J Biomater. 2020; 2020. doi:10.1155/2020/1690178
16. Supandi SK, Susilahati NLDA, Rezkika YF, Krismariono A, Maduratna E, others. Micro hydroxyapatite in bone regeneration: A literature review. Res J Pharm Technol. 2024; 17(2): 591-594.
17. Cestari F, Chemello G, Galotta A, Sglavo VM. Low-temperature synthesis of nanometric apatite from biogenic sources. Ceram Int. 2020; 46(15): 23526-23533. doi:10.1016/j.ceramint.2020.06.123
18. Panneerselvam R, Anandhan N, Ganesan KP, Marimuthu T, Paneerdoss IJ. Effect of Concentration on Nano Hydroxyapatite Powder by Wet Chemical Precipitation Route. Asian J Res Chem. 2018; 11: 545-550. https://api.semanticscholar.org/CorpusID:105885483
19. Sananta P, Andarini S, Dradjat RS, et al. Viability of Mesenchymal Stem Cells from Stromal Vascular Fraction to Tissue Engineering Scaffold Collagen, Calcium Alginate, Oxidized Cellulose, Gelatin, And Amnion Membrane (Primary Cell Culture in Vitro Study). Res J Pharm Technol. 2022; 15(6): 2771-2774.
20. Placente D, Benedini LA, Baldini M, Laiuppa JA, Santillán GE, Messina P V. Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations. Int J Pharm. 2018; 548(1): 559-570. doi:https://doi.org/10.1016/j.ijpharm.2018.07.036
21. Shetty N, Kini S, Nair P, D’Costa VF, Jayasheelan N. A Comparative Evaluation of the Enamel remineralizing potential of self assembling peptide, nanohydroxyapatite toothpaste and duraphat fluoride varnish-An In vitro Study. Res J Pharm Technol. 2023; 16(6): 2900-2904.
22. Hamdy MI, Gunawarman, Affi J, Malik A. Kekuatan Tarik Tulang Femur dan Tibia Sapi Jenis Simmental dan Korelasinya Dengan Struktur Mikro Tulang. TeknikA. 2014; 21(1): 30-34.
23. Mudhafar M, Alsailawi HA, Zainol I, Hamzah MS, Dhahi SJ, Mohammed RK. the Natural and Commercial Sources of Hydroxyapatite/Collagen Composites for Biomedical Applications: a Review Study. Int J Appl Pharm. 2022; 14(4): 77-87. doi:10.22159/ijap.2022v14i4.44411
24. Hasan MR, Yasin NSM, Ghazali MSM, Mohtar NF. Proximate and Morphological Characteristics of Nano Hydroxyapatite (Nano Hap) Extracted From Fish Bone. J Sustain Sci Manag. 2020; 15(8): 9-21. doi:10.46754/JSSM.2020.12.002
25. Bonjour JP. Calcium and phosphate: A duet of ions playing for bone health. J Am Coll Nutr. 2011; 30(August): 438S-448S. doi:10.1080/07315724.2011.10719988
26. Han R, Wang Y, Xing S, et al. Progress in reducing calcination reaction temperature of Calcium-Looping CO2 capture technology: A critical review. Chem Eng J. 2022; 450: 137952. doi:https://doi.org/10.1016/j.cej.2022.137952
27. Ou SF, Chiou SY, Ou KL. Phase transformation on hydroxyapatite decomposition. Ceram Int. 2013; 39(4): 3809-3816. doi:10.1016/j.ceramint.2012.10.221
28. Kareem MM. Extraction of Hydroxyapatite from Bovine Femur Bone by Thermal Research Papers Extraction of Hydroxyapatite from Bovine Femur Bone by Thermal Decomposition Method. 2014;(January 2012). doi:10.26634/jfet.7.2.1758
29. Bulina N V., Makarova S V., Baev SG, et al. A study of thermal stability of hydroxyapatite. Minerals. 2021; 11(12): 1-15. doi:10.3390/min11121310
30. Amirthalingam N, Deivarajan T, Paramasivam M. Mechano chemical synthesis of hydroxyapatite using dolomite. Mater Lett. 2019; 254: 379-382. doi:10.1016/j.matlet.2019.07.118
31. Bee SL, Mariatti M, Ahmad N, Yahaya BH, Abdul Hamid ZA. Effect of the calcination temperature on the properties of natural hydroxyapatite derived from chicken bone wastes. Mater Today Proc. 2019; 16: 1876-1885. doi:10.1016/j.matpr.2019.06.064
32. Rujitanapanich S, Kumpapan P, Wanjanoi P. Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia. 2014; 56(C): 112-117. doi:10.1016/j.egypro.2014.07.138
33. Figueiredo M, Fernando A, Martins G, Freitas J, Judas F, Figueiredo H. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int. 2010; 36(8): 2383-2393. doi:10.1016/j.ceramint.2010.07.016
34. Sopyan I, Gozali D, Sriwidodo, Guntina RK. Design-Expert Software (Doe): an Application Tool for Optimization in Pharmaceutical Preparations Formulation. Int J Appl Pharm. 2022; 14(4): 55-63. doi:10.22159/ijap.2022v14i4.45144
35. Kusuma A, Santosh KR. Optimization of Fast-Dissolving Tablets of Carvedilol Using 23 Factorial Design. Int J Appl Pharm. 2024; 16(1): 98-107. doi:10.22159/ijap.2024v16i1.49535
36. Ahad HA, Abdelaziz MAA, Bakrey H, Abdu A, Mohamed YBE, Noureldeen AA. Profession for the Magnitude of Temperature and Exposure time on Opuntia elatior cladode extraction on percent yield using design expert software. Res J Pharm Technol. 2023; 16(12): 5760-5764.
37. Odusote JK, Danyuo Y, Baruwa AD, Azeez AA. Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. Published online 2019. doi:https://doi.org/10.1177/228080001983682
38. Aisah N, Effendi MD, Setiawan J, Tenaga B, Nasional N. Synthesis and Characterizations of Hydroxyapatite from Bovine Bone Using Alkaline Hydrolysis Method. 2019; (April 2018). doi:10.23960/ins.v3i1.124
39. The United States Pharmacopeia Convention. The United States Pharmacopeia. Vol 35. The United States Pharmacopeial Convention (USP); 2012.
40. Trzaskowska M, Vivcharenko V, Przekora A. The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties. Int J Mol Sci. 2023; 24(6). doi:10.3390/ijms24065083
41. Kusrini E, Sontang M. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite. Radiat Phys Chem. 2012; 81(2): 118-125. doi:10.1016/j.radphyschem.2011.10.006
42. Panda R, Lankalapalli S. Design of Experiments and Optimization of Amorphous Solid Dispersion of a Bcs Class Iv Anti-Platelet Drug Through Factorial Design. Int J Appl Pharm. 2023; 15(6): 353-364. doi:10.22159/ijap.2023v15i6.48767
43. Parahita IGAA, Simpen IN, Suastuti NGAMDA. Ekstraksi Dan Karakterisasi Hidroksiapatit Dari Limbah Kerajinan Tulang Sapi Menggunakan Metode Kombinasi Alkali Hidrotermal Dengan Dekomposisi Termal. J Kim. 2016; 10: 228-235. doi:10.24843/jchem.2016.v10.i02.p09
44. Kumar R, Mohanty S. Hydroxyapatite: A Versatile Bioceramic for Tissue Engineering Application. J Inorg Organomet Polym Mater. 2022; 32(12): 4461-4477. doi:10.1007/s10904-022-02454-2
45. Endriyatno NC, Wikantyasning ER, Indrayudha P. Optimization Synthesis of Zinc Oxide Nanoparticles Using Factorial Design and Its Antibacterial Activity. Rasayan J Chem. 2023; 16(2): 773-778. doi:10.31788/RJC.2023.1628213
46. Pérez-Solis R, Gervacio-Arciniega JJ, Joseph B, Mendoza ME, Moreno A. Synthesis and characterization of a monoclinic crystalline phase of hydroxyapatite by synchrotron X-ray powder diffraction and piezoresponse force microscopy. Crystals. 2018; 8(12). doi:10.3390/cryst8120458
47. Girija C, Sivakumar MN. Amalgamation and characterization of hydroxyapatite powders from eggshell for functional biomedical application. Res J Pharm Technol. 2018; 11(10): 4242-4244.
48. Alvarado C, Alfaro A, Cisneros M, Alvarado-Quintana H. Preparation and Characterization of Hydroxyapatite Obtained from Bovine Bones. Proc LACCEI Int Multi-conference Eng Educ Technol. 2023;2023-July:1-6. doi:10.18687/laccei2023.1.1.590
49. Asyhari HF, Cabral KB, Wikantyasning ER. Optimization of Soursop (Annona muricata L.) Leaf Extract in Nanoemulgel and Antiacnes Activity Test Against Propionibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis Bacteria. Pharmacon J Farm Indones. 2023; 20(2): 216-225. doi:10.23917/pharmacon.v20i2.23308
50. Widhiardani FAF, Setiyadi G. Optimization of Glycerol as a Humectant and HPMC as a Gelling Agent in the Antioxidant Gel Formulation of Carrot (Daucus carota L.) Extract. Usadha J Pharm. 2023; 2(3): 278-290. doi:10.23917/ujp.v2i3.86
51. Setiyadi G, Putri YV. Application of Factorial Design to Optimize Lubricant Concentration and Granule Mixing Time in The Formulation Of Sour Star Fruit (Averrhoa bilimbi L) Ethanolic Extract Tablet. 2024; 21(1): 27-37.