Author(s): Jyoti Kumari, M P Chopra, Chanchal Kumar Mishra, Manik Ghosh

Email(s): mpchopra054@gmail.com

DOI: 10.52711/0974-360X.2025.00601   

Address: Jyoti Kumari, M P Chopra*, Chanchal Kumar Mishra, Manik Ghosh
Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 9,     Year - 2025


ABSTRACT:
The study evaluates the anticataract potential of 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) in a glucose-induced cataractogenesis model using isolated goat lenses. Cataracts, a leading cause of vision impairment, are exacerbated by diabetes through aldose reductase (AR)-mediated polyol pathway disruptions and oxidative stress. Molecular docking studies revealed AKBA’s superior binding affinity (binding energy < -7.0 kcal/mol) to human aldose reductase (HAR), forming stable hydrogen bonds and hydrophobic interactions with active site residues. Molecular dynamics simulations confirmed the stability and specificity of AKBA-HAR complexes, showcasing its potential as a potent AR inhibitor. In vitro investigations demonstrated AKBA’s dose-dependent efficacy in preserving lens transparency and mitigating oxidative damage. Lenses exposed to 55 mM glucose exhibited complete opacity (+++), while those treated with AKBA displayed reduced opacity, comparable to the standard drug, Enalapril. Biochemical assays revealed AKBA's significant impact on oxidative stress markers. Treatment with AKBA increased total protein content (172.33±4.30µg/g) compared to the toxic control (97.9 ± 0.31µg/g). Furthermore, AKBA significantly decreased malondialdehyde (MDA) levels (1.93±0.08µmol/g) and hydrogen peroxide (H2O2) levels (2.73±0.37µmol/g), underscoring its antioxidative efficacy. These results highlight AKBA’s dual mechanism of action: inhibiting AR activity and reducing oxidative stress. This effectively prevents glucose-induced protein aggregation and lipid peroxidation, maintaining lens clarity. Computational and experimental data validate AKBA’s therapeutic potential as an anticataract agent, especially in diabetic contexts. The findings propose AKBA as a promising non-invasive alternative for cataract prevention and management, addressing the limitations of current treatments. Future studies could further explore its pharmacokinetics and in vivo efficacy.


Cite this article:
Jyoti Kumari, M P Chopra, Chanchal Kumar Mishra, Manik Ghosh. Evaluation of 3-O-Acetyl-11-Keto-β-Boswellic Acid (AKBA) for Anticataract Activity: A Study on Glucose-Induced Oxidative Stress in Isolated Goat Lenses. Research Journal of Pharmacy and Technology. 2025;18(9):4179-9. doi: 10.52711/0974-360X.2025.00601

Cite(Electronic):
Jyoti Kumari, M P Chopra, Chanchal Kumar Mishra, Manik Ghosh. Evaluation of 3-O-Acetyl-11-Keto-β-Boswellic Acid (AKBA) for Anticataract Activity: A Study on Glucose-Induced Oxidative Stress in Isolated Goat Lenses. Research Journal of Pharmacy and Technology. 2025;18(9):4179-9. doi: 10.52711/0974-360X.2025.00601   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-21


7. REFERENCES:
1.    J.C. Lim, L. Jiang, N.G. Lust, P.J. Donaldson. Minimizing Oxidative Stress in the Lens: Alternative Measures for Elevating  Glutathione in the Lens to Protect against Cataract. Antioxidants (Basel, Switzerland). 2024; 13. https://doi.org/10.3390/antiox13101193.
2.    A. Shiels, J.F. Hejtmancik. Biology of Inherited Cataracts and Opportunities for Treatment. Annual Review of Vision Science.  2019; 5: 123–149. https://doi.org/10.1146/annurev-vision-091517-034346.
3.    H. Kiziltoprak, K. Tekin, M. Inanc, Y.S. Goker. Cataract in diabetes mellitus. World Journal of Diabetes. 2019; 10: 140–153. https://doi.org/10.4239/wjd.v10.i3.140.
4.    V. Lim, E. Schneider, H. Wu, I.H. Pang. Cataract Preventive Role of Isolated Phytoconstituents: Findings from a Decade of  Research. Nutrients. 2018; 10. https://doi.org/10.3390/nu10111580.
5.    S. Durgapal, V. Juyal, A. Verma. In vitro antioxidant and ex vivo anti-cataract activity of ethanolic extract of Cineraria maritima: a traditional plant from Nilgiri hills. Future Journal of Pharmaceutical Sciences. 2021; 7: 105. https://doi.org/10.1186/s43094-021-00258-8.
6.    D. Pizzol, N. Veronese, G. Quaglio, F. Di Gennaro, D. Deganello, B. Stubbs, A. Koyanagi. The association between diabetes and cataract among 42,469 community-dwelling  adults in six low- and middle-income countries. Diabetes Research and Clinical Practice. 2019; 147: 102–110. https://doi.org/10.1016/j.diabres.2018.12.001.
7.    N.M.N. Haddad, J.K. Sun, S. Abujaber, D.K. Schlossman, P.S. Silva. Cataract surgery and its complications in diabetic patients. Seminars in Ophthalmology. 2014; 29: 329–337. https://doi.org/10.3109/08820538.2014.959197.
8.    A. Stincone, A. Prigione, T. Cramer, M.M.C. Wamelink, K. Campbell, E. Cheung, V. Olin-Sandoval, N.M. Grüning, A. Krüger, M. Tauqeer Alam, M.A. Keller, M. Breitenbach, K.M. Brindle, J.D. Rabinowitz, M. Ralser. The return of metabolism: biochemistry and physiology of the pentose phosphate  pathway. Biological Reviews of the Cambridge Philosophical Society. 2015; 90: 927–963. https://doi.org/10.1111/brv.12140.
9.    M. Mrugacz, M. Pony-Uram, A. Bryl, K. Zorena. Current Approach to the Pathogenesis of Diabetic Cataracts. International Journal of Molecular Sciences. 2023; 24. https://doi.org/10.3390/ijms24076317.
10.    S.H. Heruye, L.N. Maffofou Nkenyi, N.U. Singh, D. Yalzadeh, K.K. Ngele, Y.-F. Njie-Mbye, S.E. Ohia, C.A. Opere. Current Trends in the Pharmacotherapy of Cataracts. Pharmaceuticals (Basel, Switzerland). 2020; 13. https://doi.org/10.3390/ph13010015.
11.    Z. Kyselova, M. Stefek, V. Bauer. Pharmacological prevention of diabetic cataract. Journal of Diabetes and Its Complications. 2004; 18(2): 129–40.
12.    K. Yadav, R. Sucheta, R. Vijayalakshmi, R. Yadav, A. Dubey, S. Minz, M. Pradhan. Phyto-nanomedicine for the Treatment of Autoimmune and Other Related Skin Disorders. Medicinal Applications of Phytopharmaceuticals. 2024: 159–190.
13.    M.Z. Siddiqui. Boswellia serrata, a potential antiinflammatory agent: an overview. Indian Journal of Pharmaceutical Sciences. 2011; 73: 255–261. https://doi.org/10.4103/0250-474X.93507.
14.    Y. Gong, X. Jiang, S. Yang, Y. Huang, J. Hong, Y. Ma, X. Fang, Y. Fang, J. Wu. The Biological Activity of 3-O-Acetyl-11-keto-β-Boswellic Acid in Nervous System Diseases. NeuroMolecular Medicine. 2022; 24: 374–384. https://doi.org/10.1007/s12017-022-08707-0.
15.    E. Imelda, R. Idroes, K. Khairan, R.R. Lubis, A.H. Abas, A.J. Nursalim, M. Rafi, T.E. Tallei. Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants (Basel, Switzerland). 2022; 11. https://doi.org/10.3390/antiox11071285.
16.    D. Tewari, O. Samoilă, D. Gocan, A. Mocan, C. Moldovan, H.P. Devkota, A.G. Atanasov, G. Zengin, J. Echeverría, D. Vodnar, B. Szabo, G. Crişan. Medicinal Plants and Natural Products Used in Cataract Management. Frontiers in Pharmacology. 2019; 10: 466. https://doi.org/10.3389/fphar.2019.00466.
17.    H. Yadav, A. Mahalvar, M. Pradhan, K. Yadav, K. Kumar Sahu, R. Yadav. Exploring the potential of phytochemicals and nanomaterial: a boon to antimicrobial treatment. Medicine in Drug Discovery. 2023; 17: 100151. https://doi.org/https://doi.org/10.1016/j.medidd.2023.100151.
18.    M.P. Vinod, M.Kr. Singh, M. Pradhan, S.Kr. Iyer, D.K. Tripathi. Phytochemical constituents and pharmacological activities of Betula alba Linn. - a review. International Journal of Pharm. Tech. Research. 2012; 4: 643–647.
19.    M. Singh, A. Kapoor, A. Bhatnagar. Physiological and Pathological Roles of Aldose Reductase. Metabolites. 2021; 11. https://doi.org/10.3390/metabo11100655.
20.    K. V Ramana. Aldose Reductase: New Insights for an Old Enzyme. Biomol Concepts. 2011; 2: 103–114. https://doi.org/10.1515/BMC.2011.002.
21.    J.K. Gupta. The Role of Aldose Reductase in Polyol Pathway: An Emerging Pharmacological  Target in Diabetic Complications and Associated Morbidities. Curr Pharm Biotechnol. 2024; 25: 1073–1081. https://doi.org/10.2174/1389201025666230830125147.
22.    R. Rinkal, J. Hemant, D. Ganesh, D. Shweta. Anticataract activity of pioglitazone by using in-Vitro goat lens model. Indian Journal of Pharmacy and Pharmacology. 2021; 2021: 14666. https://doi.org/2393-9087.
23.    A.M. Hajarnavis, P.M. Bulakh. Anticataract effects of S. cumini and A. marmelos on goat lenses in an  experimental diabetic cataract model. Journal of Ayurveda and Integrative Medicine. 2020; 11: 421–425. https://doi.org/10.1016/j.jaim.2019.08.001.
24.    A. Ramesh, P.P. Kumar, D.K. Reddy, K. Prasad. Preclinical evaluation of anti cataract activity of different fractions isolated from methanolic extract of whole plant of Hygrophila auriculata on isolated goat lens: by in-vitro model. 2013; 5: 322–325.
25.    R. Kurmi, A. Ganeshpurkar, D. Bansal, A. Agnihotri, N. Dubey. Ethanol extract of Moringa oliefera prevents in vitro glucose induced cataract on  isolated goat eye lens. Indian Journal of Ophthalmology. 2014; 62: 154–157. https://doi.org/10.4103/0301-4738.116482.
26.    R. Fernandes, P. Pereira, J.S. Ramalho, M.C. Mota, C.R. Oliveira. An experimental model for the evaluation of lipid peroxidation in lens membranes. Current Eye Research. 1996; 15: 395–402. https://doi.org/10.3109/02713689608995830.
27.    F. Feriyani, H. Maulanza, R.R. Lubis, U. Balqis, D. Darmawi. Effects of Binahong (Anredera cordifolia (Tenore) Steenis) Extracts on the Levels  of Malondialdehyde (MDA) in Cataract Goat Lenses. TheScientificWorldJournal. 2021; 2021: 6617292. https://doi.org/10.1155/2021/6617292.
28.    L. Qi, Y. Zhou, W. Li, M. Zheng, R. Zhong, X. Jin, Y. Lin. Effect of Moringa oleifera stem extract on hydrogen peroxide-induced opacity of cultured mouse lens. BMC Complementary and Alternative Medicine. 2019; 19: 144. https://doi.org/10.1186/s12906-019-2555-z.
29.    A. Vidal-Limon, J.E. Aguilar-Toalá, A.M. Liceaga. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J Agric Food Chem. 2022; 70: 934–943. https://doi.org/10.1021/acs.jafc.1c06110.
30.    A.A. Elfiky, W.M. Elshemey. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J Med Virol. 2018; 90: 13–18. https://doi.org/https://doi.org/10.1002/jmv.24934.
31.    K. Kaavin, D. Naresh, M.R. Yogeshkumar, M. Krishna Prakash, S. Janarthanan, M. Murali Krishnan, M. Malathi. In-silico DFT studies and molecular docking evaluation of benzimidazo methoxy quinoline-2-one ligand and its Co, Ni, Cu and Zn complexes as potential inhibitors of Bcl-2, Caspase-3, EGFR, mTOR, and PI3K, cancer-causing proteins. Chemical Physics Impact. 2024; 8: 100418. https://doi.org/https://doi.org/10.1016/j.chphi.2023.100418.
32.    S. Rampogu, G. Lee, J.S. Park, K.W. Lee, M.O. Kim. Molecular Docking and Molecular Dynamics Simulations Discover Curcumin Analogue  as a Plausible Dual Inhibitor for SARS-CoV-2. Int J Mol Sci. 2022; 23. https://doi.org/10.3390/ijms23031771.
33.    T. Fornstedt, P. Forssén, D. Westerlund, System peaks and their impact in liquid chromatography. TrAC Trends in Analytical Chemistry. 2016; 81: 42–50. https://doi.org/https://doi.org/10.1016/j.trac.2016.01.008.
34.    S. Dubey, S. Saha, S.A. Sara. In vitro anti-cataract evaluation of standardised Abies pindrow leaf extract  using isolated goat lenses. Natural Product Research. 2015; 29: 1145–1148. https://doi.org/10.1080/14786419.2014.980250.
35.    J. Li, F. Buonfiglio, Y. Zeng, N. Pfeiffer, A. Gericke. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the  Horizon?. Antioxidants (Basel, Switzerland). 2024; 13: https://doi.org/10.3390/antiox13101249.
36.    S. Theodoropoulou, E. Samoli, P.G. Theodossiadis, M. Papathanassiou, A. Lagiou, P. Lagiou, A. Tzonou. Diet and cataract: a case-control study. International Ophthalmology. 2014; 34: 59–68. https://doi.org/10.1007/s10792-013-9795-6.
37.    S.N. Mestry, A.R. Juvekar. Aldose reductase inhibitory potential and anti-cataract activity of Punica granatum Linn. leaves against glucose-induced cataractogenesis in goat eye lens. Oriental Pharmacy and Experimental Medicine. 2017; 17: 277–284. https://doi.org/10.1007/s13596-017-0274-x.
38.    K. Jomova, R. Raptova, S.Y. Alomar, S.H. Alwasel, E. Nepovimova, K. Kuca, M. Valko. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology. 2023; 97: 2499–2574. https://doi.org/10.1007/s00204-023-03562-9.
39.    B. Lee, N.A. Afshari, P.X. Shaw. Oxidative stress and antioxidants in cataract development. Current Opinion in Ophthalmology. 2024; 35: 57–63. https://doi.org/10.1097/ICU.0000000000001009.


 


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available