Author(s): Sunita Arya, Sonal Verma, Anjana Verma, Robina Aman, Moulshree Bhatt

Email(s): 081994sunita@gmail.com

DOI: 10.52711/0974-360X.2025.00610   

Address: Sunita Arya1*, Sonal Verma1, Anjana Verma2, Robina Aman2, Moulshree Bhatt2
1Department of Chemistry, S.S.J. Campus Almora, Kumaun University, Uttarakhand, 263601, India.
2Department of Chemistry, S.S.J. University Campus, Almora, Uttarakhand, 263601, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 9,     Year - 2025


ABSTRACT:
Schiff bases, an active biological moiety, possess diverse pharmacological activities. Here, ethyl silicon (IV) complexes are formed by reacting ethyl silicon alkoxides with Schiff base. The Schiff bases and their ethyl silicon (IV) complexes were characterized physically as well as by using spectral characterization techniques, including infrared spectroscopy and multinuclear NMR (1H, 13C, and 29Si-NMR). Later, these Schiff bases and their ethyl silicon (IV) complexes were compared for various biological activities. In antibacterial activity, new ethyl silicon (IV) Schiff base complexes inhibited the growth of all the four selected bacteria. In all the complexes the zone of inhibition was found to be dose dependent, i.e. with the increase in the concentration the zone of inhibition increased. The maximum zone of inhibition for the bacterium B. subtilis, S. aureus, E. Coli, and S. abony, 1c showed maximum zone of inhibition with (80%), (69.69%), (91.67%), and (50%), percent inhibition at 10mg/ml. Pharmacological activities show an increase in the number of organic groups as well as in the coordinating environment of silicon. All compounds exhibited antioxidant, anti-inflammatory, and anti-diabetic activities, but the ethyl silicon (IV) Schiff base complexes demonstrated superior activities relative to the Schiff base.


Cite this article:
Sunita Arya, Sonal Verma, Anjana Verma, Robina Aman, Moulshree Bhatt. Pharmacological Investigations, Synthesis, and Spectral Analyses of Newly Synthesized Potentially Bioactive Ethyl Silicon (IV) Schiff Base Complexes. Research Journal of Pharmacy and Technology. 2025;18(9):4248-4. doi: 10.52711/0974-360X.2025.00610

Cite(Electronic):
Sunita Arya, Sonal Verma, Anjana Verma, Robina Aman, Moulshree Bhatt. Pharmacological Investigations, Synthesis, and Spectral Analyses of Newly Synthesized Potentially Bioactive Ethyl Silicon (IV) Schiff Base Complexes. Research Journal of Pharmacy and Technology. 2025;18(9):4248-4. doi: 10.52711/0974-360X.2025.00610   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-30


REFERENCES:
1.    Singh K. Puri P. Dharampal. Synthesis and Spectroscopic Studies of some new Organometallic Chelates Derived from Bidentate Ligands. Turkish Journal of Chemistry. 2010; 34: 499–507. doi.org/10.3906/kim-0912-354.
2.    Jain M. Singh R. Synthesis, Characterization, and Biotoxicity of NN Donor Sulphonamide Imine Silicon(IV) Complexes. Bioinorganic Chemistry and Application. 2006; 2006: 1–10. doi.org/10.1155/BCA/2006/13743
3.    Kumari A. Singh I. Tandon J. P. Fungicidal, Bactericidal and Antifertility Activities of Diorganosilicon(IV) Complexes Derived from Benzothiazolines. Applied Organometallic Chemistry. 2004; 9: 127–132. doi.org/10.1002/aoc.590090206
4.    Franz A. K. Wilson S. O. Organosilicon Molecules with Medicinal Applications. Journal of Medicinal Chemistry. 2013; 56: 388–405. dx.doi.org/10.1021/jm3010114
5.    Jain M. Gaur S. Diwedi S. C. Joshi S. C. Singh R. V. Bansal A. Nematicidal, Insecticidal, Antifertility, Antifungal and Antibacterial Activities of Salicylanilide Sulphathiazole and its Manganese, Silicon and Tin Complexes. Phosphorus, Sulfur, and Silicon and the Related Elements. 2004; 179: 1517–1537.
6.    Arya S. Verma S. Aman R. A Review of the Synthesis, Spectral Aspects, and Biological Evaluation of Silicon(IV) Complexes with N, O, and S Donor Ligands. Russian Journal of Coordination Chemistry. 2023; 49(12): 862–885. doi.org/10.1134/S1070328423601292
7.    Eduok U. Faye O. Szpunar J.  Recent developments and Applications of Protective Silicone Coatings: A Review of PDMS Functional Materials. Progress in Organic Coating. 2017; 111: 124–163. doi.org/10.1016/j.porgcoat.2017.05.012
8.    Mir R. A. Bhat B. A. Yousuf H. Islam S. T. Raza A. Rizvi M. A. Charagh S. Albaqami M. Sofi P. A. Zargar S. M. Multidimensional role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. Frontiers in Plant science. 2022; 13: 819658. doi.org/10.3389/fpls.2022.819658
9.    Singh M. K. Bhaumik S. Lal R. A. Synthesis and Characterization of tris [N-(2-oxo-1-naphthylidene)glycinato] Manganese(III) and its Reaction Products with Oxygen, Nitrogen and Sulphur Donor. Journal of the Indian Chemical Society. 2007; 87: 418–426. doi.org/10.5281/zenodo.5819486
10.    Aman R. Sharma R. Pandey H. Chandra M. Silicon(IV) Derivatives of N-[o-Hydroxy Substituted (or H) Benzyl] Glycines. Asian Journal of Chemistry. 1999; 11(3): 931.
11.    Kalemba D. A. A. K. Kunicka A. Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry. 2003; 10: 813–829. doi.org/10.2174/0929867033457719
12.    Amutha K. and Aishwarya S. Evaluation of Antibacterial and Antidiabetic Activity and Phytochemical Analysis of Syzygium cumini (l.) Skeels. Seed. Research Journal of Pharmacology and Pharmacodynamics. 2010; 2(5): 348-350.
13.    Suganya S. Bharathidasan R. Senthilkumar G. Madhanraj P. Panneerselvam A. Antibacterial Activity of Essential Oil Extracted from Coriandrum sativam (L.) and GC-MS Analysis. Research Journal of Science and Technology. 2012; 4(5): 203-207.
14.    Thomas P. D. Actinomycetes Synthesized Nanoparticles and their Antibacterial Activity. Research Journal of Science and Technology. 2017; 9(2): 219–223. doi.org/10.5958/2349-2988.2017.00038.9
15.    Rani M. S. C. Rohini. Keerthi B. S. Mamata C. Green Synthesis of Novel Chalcone Derivatives, Characterization and its Antibacterial Activity. Research Journal of Science and Technoogy. 2019; 11(3): 183–185. doi.org/10.5958/2349-2988.2019.00028.7
16.    Abuskhuna S. M. Zeglam T. H. Fhid O. N. R. Jebril A. O. Antibacterial Activity of Hydroxyimidazole Derivatives. Asian Journal of Pharmacy and Technology. 2020; 10(1): 7–10. doi.org/ 10.5958/2231-5713.2020.00002.1
17.    Bhatt S. Tewari G. Pande C. Prakash O. Tripathi S. Aroma Profile and Antioxidant Potential of Origanum vulgare L.: Impact of drying. Journal of Essential Oil Bearing Plants. 2019; 22(1): 214–230. doi.org/10.1080/0972060X.2019.1599736
18.    Prasad D. N. Antioxidant Activity of Alphonsea sclerocarpa Bark. Research Journal of Pharmacology and Pharmacodynamics. 2009; 1(2): 66-69.
19.    Gupta A. K., Gowda S. K. P. Umashankar R.N. Nandeesh R. Sreedhar S. In-vitro Antioxidant Activity of Aqueous Extract of Physalis minima Linn. Research Journal of Pharmacology and Pharmacodynamics. 2010; 2(5): 332–334.
20.    Faruk M. O. Saha D. Chowdhury S. Pal S. Kabir M. G. In vitro Antioxidant activity of Methanolic Aerial Part Extract of Mimosa pudica. Research J. Pharmacology and Pharmacodynamics. 2012; 4(4): 202-205.
21.    Sathish R. Nachammai V. Pasupathi G. Senthilkumar M. In-Vitro Antiulcer and Antioxidant Activity of Ethanolic Extract of Ficus racemosa L. latex. Research Journal of Pharmacology and Pharmacodynamics. 2018; 10(4): 159–162. doi.org/ 10.5958/2321-5836.2018.00029.0
22.    Joshi M. Himani. Kumar R. Prakash O. Pant A. K. Rawat D. S. Chemical Composition and Biological Activities of Nepeta hindostana (Roth) Haines, Nepeta graciliflora Benth. and Nepeta cataria L. from India. Journal of Medicinal Herbs. 2021; 12: 35–46.
23.    Jain S. Singh M. Barik R. Malviya N. In-vitro Antioxidant activity of Premna integrifolia Linn. Roots. Research J. Pharmacology and Pharmacodynamics. 2013; 5(5): 293–296.
24.    Karakoti H. Mahawer S. K. Tewari, M. Kumar R. Prakash O. Oliveira M. S. D. Rawat D. S. Phytochemical Profile, In Vitro Bioactivity Evaluation, In Silico Molecular Docking and ADMET study of Essential Oils of three Vitex species grown in Tarai region of Uttarakhand.  Antioxidants. 2022; 11: 1911. doi.org/10.3390/antiox11101911
25.    Kanyal J. Prakash O. Kumar R. Rawat D. S. Srivastava R. M. Singh R. P. Pant A. K. Study on Comparative Chemical Composition and Biological Activities in the Essential Oils from different parts of Coleus barbatus (andrews) bent. ex. G. don. Journal of Essential oil Bearing Plants. 2021; 24(4): 808–825. doi.org/10.1080/0972060X.2021.1958701
26.    Aneesa N. N. Anitha R. Varghese S. Antidiabetic Activity of Ajwain Oil in different In Vitro Models. Journal of Pharmacy and Bioallied Sciences. 2019; 11: 142. doi.org/10.4103/jpbs.JPBS_128_18
27.    Singh M. S. Singh P. K. Hexa‐Coordinate Silicon Complexes: Synthesis and Characterization. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry. 2003; 33(2): 271–280. doi.org/10.1081/SIM-120017786
28.    Raju M. D. Nitrogen, Oxygen bonded hetrocyclic Organosilicon(IV) derivatives of a new Schiff base: Synthesis and Spectral Aspects.  Journal of Current Chemical and Pharmaceutical Science. 2011; 1(1): 9–14.
29.    Wady A. F. Hussein M. B. Mohammed M. M. Synthesis, Characterization of Schiff Bases Derived from Salicylaldehyde with some Amino Acids by a New Developed Method. Scholars International Journal of Chemistry and Material Science. 2021; 4(5): 46–53. doi.org/10.36348/sijcms.2021.v04i05.001
30.    Devi J. Devi S. Kumar A. Synthesis, Spectral, and In Vitro Antimicrobial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Dehydroacetic Acid. Monatshefte fur Chemie. 2016. doi.org/10.1007/s00706-016-1720-z
31.    Bhanuka S. Khaturia S. Chahar M. Singh H. L. Design, Spectroscopic Characterization and Theoretical Studies of Organotin (IV) and Organosilicon (IV) Complexes with Schiff Base Ligands Derived from Amino Acids. Asian Journal of Chemistry. 2020; 32(11): 2821–2828. doi.org/10.14233/ajchem.2020.22850
32.    Singh H. L. Singh J. B. Bhanuka S. Synthesis and Spectral, Antibacterial, Molecular Studies of Biologically Active Organosilicon(IV) Complexes. Journal of the Association of Arab Universities for Basic and Applied Sciences. 2016; 23(1): 1–9. doi.org/10.1016/j.jaubas.2016.05.003
33.    Aliyu H. N. Ado I. Studies of Mn(II) and Ni(II) Complexes with Schiff Base Derived from 2-Amino Benzoic Acid and Salicylaldehyde. Bayero Journal of Pure and Applied Sciences. 2010; 3(1): 245–249.
34.    Singh K. Dharampal. Synthetic, Structural and Biological Studies of Organosilicon(IV) Complexes of Schiff Bases Derived from Pyrrole-2-carboxaldehyde. Journal of the Serbian Chemical Society. 2010; 75(7): 917–927. doi.org/10.2298/JSC081216063S
35.    Shoaib K. Rehman W. Mohammad B. Ali S. Synthesis, Characterization and Biological Applications of Transition Metal Complexes of [NO] Donor Schiff Bases. Journal of Proteomics and Bioinformatics. 2013; 6(7): 153–157. doi.org/10.4172/jpb.1000274
36.    Kakanejadifard A. Esna-ashari F. Hashemi P. Zabardasti A. Synthesis and Characterization of an Azodibenzoic Acid Schiff Base and its Ni(II), Pb(II), Zn(II) and Cd(II) Complexes. Spectrochimica Acta-A: Molecular and Biomolecular Spectroscopy. 2013; 106: 80–85. doi.org/10.1016/j.saa.2012.12.044
37.    Devi J. Batra N. Kumari S. Synthesis and Characterization of Novel Organosilicon(IV) Complexes with Pyridine Dicarboxylic Acid and Mercapto Pyridine Carboxylic Acid. International Journal of Research in Chemistry and Environment. 2011; 1(2): 50–56.
38.    Malhotra R. Mehta J. Bala K. Sharma A. K.  Heterobimetallic Penta- and Hexa-Coordinated Organotin (IV) Complexes at different Temperatures. Indian Journal of Chemistry. 2008; 47: 58–61. 
39.    Singh K. Dharampala. Dhiman S. S. Spectral Studies and Antimicrobial Activities of Organosilicon(IV) and Organotin(IV) Complexes of Nitrogen and Sulfur Donor Schiff Bases Derived from 4-Amino-5-Mercapto-3-Methyl-S-Triazole. Main Group Chemistry. 2009; 8: 47–59. doi.org/10.1080/10241220902962945
40.    Singh H. L. Singh J.  Mukherjee A. Synthesis, Spectral, and In Vitro Antibacterial Studies of Organosilicon(IV) Complexes with Schiff Bases Derived from Amino Acids. Bioinorganic Chemistry and Applictions. 2013; 2013: 1–9. doi.org/10.1155/2013/425832
41.    Saroya S. Asija S. Kumar N. Deswal Y. Devi J. Organotin (IV) Complexes Derived from Tridentate Schiff Base Ligands: Synthesis, Spectroscopic Analysis, Antimicrobial and Antioxidant Activity. Journal of the Indian Chemical Society. 2022; 99: 100379. doi.org/10.1016/j.jics.2022.100379
42.    Kanyal B. Pande C. Tewari G. Aabha. Rana L. Padalia R. C. Kabdal T. Prakash O. Singh S. Influence of Post-Harvest drying processes on the Composition and Biological Activities of Essential Oils from Leaves of Camphor tree from Uttarakhand Himalaya, India. Journal of Essential oil Bearing Plants. 2023; 26: 161175. doi.org/10.1080/0972060X.2023.2179426
43.    Nath M. Saini P. K. Kumar A. New Di- and Triorganotin(IV) Complexes of Tripodal Schiff Base Ligand containing three Imidazole arms: Synthesis, Structural Characterization, Anti-inflammatory Activity and Thermal Studies. Journal of Organometallic Chemistry. 2010; 695: 1353–1362. doi.org/10.1016/j.jorganchem.2010.02.009

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available