Author(s):
Zakiya Fathima C, Jainey P. James, Vaishnavi Gatty, Sindhu T.J, Akito Sheqi
Email(s):
jaineyjames@gmail.com , jaineyjames@nitte.edu.in
DOI:
10.52711/0974-360X.2025.00616
Address:
Zakiya Fathima C, Jainey P. James*, Vaishnavi Gatty, Sindhu T.J, Akito Sheqi
Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences (NGSMIPS),
Nitte (Deemed to be University), Deralakatte, Mangaluru - 575018, Karnataka, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 9,
Year - 2025
ABSTRACT:
Flavonoids, a group of polyphenolic compounds widely present in plants, are recognised as secondary metabolites with wide range of biological activity. This study aimed to assess the potential of flavonoids to inhibit monoamine oxidase (MAO) using in silico tools. The investigation involved evaluating the physicochemical, pharmacokinetic, bioactivity, and toxicity parameters of the compounds through QikProp, Molinspiration, and Pro-Tox-II. Additionally, binding affinity against MAO-A and MAO-B was assessed by molecular docking study using Schrödinger software. The binding free energy of the complex was determined using Prime MMGBSA. The flavonoids met Lipinski's rule of five, demonstrating favourable physicochemical properties, and making them potential drug candidates. Most compounds exhibited positive bioactivity scores and low toxicity levels. The docking study revealed that Genistein 8-C-glucoside displayed promising multi-targeting capabilities against both MAO-A and MAO-B. This data not only advances the understanding of flavonoid pharmacology, also serves as a key tool for future investigations into the diverse biological actions of these plant-derived compounds.
Cite this article:
Zakiya Fathima C, Jainey P. James, Vaishnavi Gatty, Sindhu T.J, Akito Sheqi. Unveiling the Monoamine Oxidase Inhibitory Potential of Natural Flavonoids: A Computational Approach. Research Journal of Pharmacy and Technology. 2025;18(9):4289-6. doi: 10.52711/0974-360X.2025.00616
Cite(Electronic):
Zakiya Fathima C, Jainey P. James, Vaishnavi Gatty, Sindhu T.J, Akito Sheqi. Unveiling the Monoamine Oxidase Inhibitory Potential of Natural Flavonoids: A Computational Approach. Research Journal of Pharmacy and Technology. 2025;18(9):4289-6. doi: 10.52711/0974-360X.2025.00616 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-36
REFERENCES:
1. Shen N. Wang T. Gan Q. Liu S. Wang L. and Jin B.et al Plant flavonoids Classification distribution biosynthesis and antioxidant activity. Food chem. 2022; 132531
2. Liga S. and Paul C. and Péter F. et al. Flavonoids Overview of biosynthesis biological activity and current extraction techniques. Plants 2023; 12(14): 2732. https://doi.org/10.3390/plants12142732
3. Perez-Vizcaino F. and Fraga C.G. Research trends in flavonoids and health. Arch Biochem Biophys. 2008; 646: 107-112. https://doi.org/10.1016/j.abb.2018.03.022
4. Rachana Mishra and D L Verma. Principal Antioxidative Flavonoids from Rosmarinus officinalis Grown in the Hills of Central Himalaya. Research J. Pharm. and Tech. 2011;4(3): 476-479.
5. Maleki S.J. Crespo J.F and Cabanillas B.Anti-inflammatory effects of flavonoids. Food Chem. 2019; 30; 299: 125124. https://doi.org/10.1016/j.foodchem.2019.125124
6. Venkata Naveen Kasagana andSwathi Sree Karumuri. Effect of Wedelia paludosa (Asteraceae) on Brain Neurotransmitters and Enzyme Monoamine Oxidase, Following Cold Immobilization Stress. Research J. Pharm. and Tech. 2011; 4(12): 1910-1911.
7. Sakshi Bhardwaj, Sonal Dubey. Qsar and Docking Studies of Some Novel Piperine Analogues as Monoamine Oxidase Inhibitors. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(2): 115-2. 10.52711/2231-5659.2022.00019
8. Kong P. Zhang B. Lei P. Kong X. Zhang S. et al. Neuroprotection of MAO-B inhibitor and dopamine agonist in Parkinson disease. Int. J. Clin. Exp. Med. 2015; 8(1): 431-439
9. Manzoor S. and Hoda N.A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents A review. Eur. J. Med. Chem. 2020; 206: 112787. https://doi.org/10.1016/j.ejmech.2020.112787
10. Marzo C.M. Gambini S. Poletti S. Munari F. et al.Inhibition of Human Monoamine Oxidases A and B by Specialized Metabolites Present in Fresh Common Fruits and Vegetable Plants. 2022; 11(3): 346. https://doi.org/10.3390/plants11030346
11. Carradori S. D’Ascenzio M. Chimenti P. Secci D.et al.Selective MAO-B inhibitors lesson from natural products. Mol. Divers. 2013; 18: 219-243.
12. Rajesh Kumar Reddy P, Saravanan J and Praveen T K. Evaluation of Neuroprotective Activity of Melissa officinalis in MPTP Model of Parkinson’s Disease in Mice. Research J. Pharm. and Tech. 2019; 12(5): 2103-2108.
13. James J.P. Monteiro S.R. Sukesh K.B. and Varun A. Design and Identification of Lead Compounds Targeting Nipah G Attachment Glycoprotein by In Silico Approaches. J. Pharm Res Int. 2021; 33(40A): 156-19. DOI: 10.9734/JPRI/2021/v33i40A32232
14. James J.P. Jouhara M. Fathima Z.C. and D’Souza R.R. Green synthesis multitargeted molecular docking and ADMET studies of chalcones based scaffold as anti-breast canceragent. Research J. Pharm. and Tech. 2023; 16(5): 2215-2222. http://dx.doi.org/10.52711/0974-360X.2023.00364
15. Pavan T.S. James J.P. Dwivedi S.R.P. Priya S. Fathima C.Z. and Sindhu T.J. Synthesis Molecular Docking and Molecular Dynamic Studies of Thiazolidineones as Acetylcholinesterase and Butyrylcholinesterase Inhibitors. Polycycl Aromat Compd.2023 Jul 15; 44(5): 3387-3407. https://doi.org/10.1080/10406638.2023.2233666
16. James J.P. Ail P.D. Crasta L. Kamath R.S. Shura M.H. and Sindhu T.J. In Silico ADMET and Molecular Interaction Profiles of Phytochemicals from Medicinal Plants in Dakshina Kannada. JHAS NU. 2024; 14(02): 190-201. DOI: 10.1055/s-0043-1770057
17. Jung H.A. Roy A. and Choi J.S. In vitro monoamine oxidase A and B inhibitory activity and molecular docking simulations of fucoxanthin.Fish. Sci. Res. 2016; 83(123): 123-132.
18. James J.P. Aziz A.A. Krishnan D. Kumar P. and Kumar A. Molecular docking and pharmacophore modelling of phytoconstituents of vaccinium secundiflorum for antidiabetic and antioxidant activity. Int. J. Comput. Biol. Drug. Des. 2022; 14(5): 315-342. https://doi.org/10.1504/IJCBDD.2021.120122
19. James J.P. Devaraji V. Sasidharan P. and Pavan T.S.Pharmacophore Modeling; 3D QSAR; Molecular Dynamics Studies and Virtual Screening on Pyrazolopyrimidines as anti-Breast Cancer Agents. Polycycl. Aromat. Compd. 2022; 6; 43(8): 7456-7473. https://doi.org/10.1080/10406638.2022.2135545
20. James JP, Crasta L, Shetty V, Jyothi D, Jouhara M, Fathima ZC, Sindhu TJ. Tyrosinase and peroxiredoxin inhibitory action of ethanolic extracts of Memecylon malabaricum leaves. Research J. Pharm. and Tech. 2024; 17(4): 1763-70. 10.52711/0974-360X.2024.00280
21. Mathew JB, Fathima Z, Raviraj C, Mathew A. Quantitative Estimation of Mangiferin and Molecular Docking Simulation of Salacia reticulata Formulation. Research J. Pharm. and Tech. 2024; 17(2): 578-84. 10.52711/0974-360X.2024.00090
22. Kodical DD, James JP, Deepthi K, Kumar P, Cyriac C, Gopika KV. ADMET, Molecular docking studies and binding energy calculations of Pyrimidine-2-Thiol Derivatives as Cox Inhibitors. Research Journal of Pharmacy and Technology. https://doi.org/10.5958/0974-360x.2020.00742.8 2
23. Jeyabaskar Suganya, Viswanathan T, Mahendran Radha, Nishandhini Marimuthu. In silico Molecular Docking studies to investigate interactions of natural Camptothecin molecule with diabetic enzymes. Research J. Pharm. and Tech. 2017; 10(9): 2917-2922.
24. Reshma Thomas, R. Hari, Josna Joy, Saranya Krishnan, Swathy A.N, Sruthy. S. Nair, Asha Asokan Manakadan, Sathianarayanan, Saranya T.S. In silico Docking Approach of Coumarin Derivatives as an Aromatase Antagonist. Research J. Pharm. and Tech. 2015; 8(12): 1673-1678.
25. B. Vijayakumar B. S. Parasuraman S. Raveendran R. and Velmurugan D. Identification of natural inhibitors against angiotensin I converting enzyme for cardiac safety using induced fit docking and MM-GBSA studies, Pharmacogn. Mag. 2014; 10(3): S639-S644. https://doi.org/10.4103%2F0973-1296.139809
26. Grob S. Molinspiration Cheminformatics Free Web Services (2021).
27. Azam S. Haque M.E. Jakaria M. JoS. H. Kim I.S. and Choi D.K.G-protein-coupled receptors in CNS a potential therapeutic target for intervention in neurodegenerative disorders and associated cognitive deficits.Cells. 2020; 9(2): 506. https://doi.org/10.3390/cells9020506
28. Wang S. Wang B. Shang D. Zhang K. Yan X. and Zhang X. Ion channel dysfunction in astrocytes in neurodegenerative diseases. Front. Physiol. 2022; 13: 814285. https://doi.org/10.3389/fphys.2022.814285
29. Oprea T.I. Bologa C.G. Brunak S. Campbell A. Gan G.N. Gaulton A. and et.al. Unexploredtherapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 2018; 17(5): 317-332
30. Saijo J. Crotti A. and Glass C.K. Nuclear receptors, inflammation, and neurodegenerative diseases Adv. Immunol. 2010; 106: 21-59. https://doi.org/10.1016/S0065-2776(10)06002-5
31. Esmaeili Y. Yarjanli Z. Pakniya F. Bidram E. Łos M.J. Eshraghi M. and et.al. Targeting autophagy, oxidative stress, and ER stress for neurodegenerative disease treatment J. Control. Release. 2022; 345: 147-175. https://doi.org/10.1016/j.jconrel.2022.03.001
32. Iovino L. Tremblay M.E. and Civiero L. Glutamate-induced excitotoxicity in Parkinson disease and The role of glial cells J. Pharmacol. Sci. 2020; 144(3): 151-164 https://doi.org/10.1016/j.jphs.2020.07.011
33. Banerjee P. Eckert A.O .Schrey A.K. and Preissner R. ProTox-II a web server for the prediction of toxicity of chemicals Nucleic Acids Res. 2018; 46(W1); W257-63. https://doi.org/10.1093/nar/gky318