Author(s): Rosaria Ika Pratiwi, Agung Endro Nugroho, Ika Puspitasari, Tri Murti Andayani, Nur Rahmi Ananda

Email(s): nugroho_ae@ugm.ac.id

DOI: 10.52711/0974-360X.2025.00619   

Address: Rosaria Ika Pratiwi1,2, Agung Endro Nugroho3*, Ika Puspitasari3,4, Tri Murti Andayani3, Nur Rahmi Ananda5
1Doctoral Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
2Pharmacy Study Program, Politeknik Harapan Bersama, Central Java, Indonesia.
3Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
4Academic Hospital Universitas Gadjah Mada, Yogyakarta, Indonesia.
5Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada / Dr. Sardjito General Hospital, Yogyakarta, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 9,     Year - 2025


ABSTRACT:
Culture and local antimicrobial susceptibility testing need to be carried out periodically, and special attention needs to be received from hospitals to reduce resistance levels and better manage community-acquired pneumonia (CAP). This study aims to determine the etiological profile of CAP in adult inpatients and antimicrobial susceptibility patterns at the Dr. Sardjito General Hospital, Yogyakarta, Indonesia. A prospective cohort study was conducted in the non-VIP adult ward at Dr. Sardjito General Hospital, from September 2022 to May 2023. There were 222 adult patients diagnosed with CAP as a sample based on the criteria. From 222 CAP patients, culture results were obtained as much 236 isolates of pathogenic bacteria which were suspected to be the clinical cause of CAP, with details of 208 patients each producing one strain of pathogenic bacteria (n=208 isolates), and 14 patients each producing two strains of pathogenic bacteria (n=28 isolates). All collected sputum samples were analyzed using the VITEK-2 instrument to identify bacteria and antimicrobial susceptibility results were interpreted based on Clinic and Laboratory Standards Institute (CLSI), sensitive if =70%, moderate if 40-69%, or resistant if <40%. The Gram-positive pathogens that cause CAP are Coagulase-negative Staphylococci, Enterococcus faecalis/ faecium, Kocuria kristinae, Streptococcus sp., Staphylococcus epidermidis, Staphylococcus aureus, and Streptococcus mitis. The Gram-negative pathogens that cause CAP are Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, Escherichia coli, Stenotrophomonas maltophilia, and Serratia marcescens. Gram-positive organisms were dominated by coagulase-negative Staphylococci which was susceptible to gentamicin, linezolid, quinupristin/dalfopristin, tigecycline, and vancomycin (75-100%), Enterococcus faecalis/faecium which was susceptible to penicillin, fluoroquinolone, carbapenem, vancomycin, and linezolid (71.4-100%), and Streptococcus sp. which was susceptible to penicillin, cephalosporin, chloramphenicol, macrolide, imipenem, fluoroquinolone, and tigecycline (75-100%). Gram-negative organisms are dominated by Klebsiella pneumoniae which is susceptible to aminoglycosides, second and fourth-generation cephalosporins, colistin, and tigecycline (73.2-100%), Acinetobacter baumannii which is susceptible to amikacin, colistin, and tigecycline (71.4-100%), and Pseudomonas aeruginosa which is susceptible to aminoglycosides, third-generation cephalosporins, colistin, fluoroquinolones, carbapenems, and penicillins (75-100%).


Cite this article:
Rosaria Ika Pratiwi, Agung Endro Nugroho, Ika Puspitasari, Tri Murti Andayani, Nur Rahmi Ananda. Bacterial Profile and Antimicrobial Susceptibility Pattern in Community-acquired Pneumonia patient at General Hospital, Indonesia. Research Journal of Pharmacy and Technology. 2025;18(9):4313-2. doi: 10.52711/0974-360X.2025.00619

Cite(Electronic):
Rosaria Ika Pratiwi, Agung Endro Nugroho, Ika Puspitasari, Tri Murti Andayani, Nur Rahmi Ananda. Bacterial Profile and Antimicrobial Susceptibility Pattern in Community-acquired Pneumonia patient at General Hospital, Indonesia. Research Journal of Pharmacy and Technology. 2025;18(9):4313-2. doi: 10.52711/0974-360X.2025.00619   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-39


REFERENCES:
1.    Rizki AT, Eli H, Riyadi A. A Narrative Review Evaluation of Resistance Antibiotics Used in Pneumonia. Research Journal of Pharmacy and Technology. 2023; 15(9): 4261–4269. doi.org/10.52711/0974-360X.2022.00716. 
2.    Indra P, Putra IA, Tiara R, Anzillina R, Nuraziza RM, Dhea KV. Multi-Epitopes Vaccine Design Against Klebsiella pneumoniae Based on Outer Membrane Protein Using Immunoinformatics Approaches. Research Journal of Pharmacy and Technology. 2024; 17(1): 11–18. doi.org/ 10.52711/0974-360X.2024.00003. 
3.    Mushrifa H, Zaheema, Sajan FP, Vinitha, Josvi VG, Ravikuma. Prescribing Pattern of Antimicrobials for Respiratory Tract Infections Among Paediatric Population in A Multi- Speciality Teaching Hospital. Research Journal of Pharmacy and Technology. 2024; 16(12): 5972–5977. doi.org/10.52711/0974-360X.2023.00969. 
4.    Bandy A, Almaeen AH. Pathogenic Spectrum of Blood Stream Infections and Resistance Pattern in Gram-Negative Bacteria From Aljouf Region of Saudi Arabia. PLoS One. 2020; 15(6): 1–14. doi.org/10.1371/journal.pone.0233704J. 
5.    Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, With Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides A Review. Pathogens. 2020; 9(7): 1–53. doi.org/ 10.3390/pathogens9070522. 
6.    Sader HS, Streit JM, Carvalhaes CG, Huband MD, Shortridge D, Mendes RE. Frequency of Occurrence and Antimicrobial Susceptibility of Bacteria Isolated From Respiratory Samples of Patients Hospitalized with Pneumonia in Western Europe, Eastern Europe and the USA: Results from the SENTRY Antimicrobial Surveillance Program (2016-19). JAC-Antimicrobial Resistance. 2021; 3(3): 1–7. doi.org/10.1093/jacamr/dlab117. 
7.    Ibrahim AI, Hassan AA, Ahmed DA, Daffalla SO. Bacterial Etiology of Community-Acquired Pneumonia and Their Antimicrobial Susceptibility in Patients Admitted to Alshaab Teaching Hospital Sudan. Asian Journal of Biomedical and Pharmaceutical Sciences. 2019; 9(66): 1–6. doi.org/10.35841/2249-622X.66.18-890.
8.    Abbas HA, Kadry AA, Shaker GH, Goda RM. Resistance of Escherichia coli and Klebsiella pneumoniae Isolated From Different Sources to β-lactam Antibiotics. Research Journal of Pharmacy and Technology. 2017; 10(2): 589–591. doi.org/10.5958/0974-360X.2017.00116.0. 
9.    Nanda A, Dhamodharan, Nayak. Antibiotic Resistance Pattern Exhibited by ESBL (Extended Spectrum β-lactamases) in Multidrug Resistant Strains, Escherichia coli. Research Journal of Pharmacy and Technology. 2017; 10(11): 3705–3708. doi.org/10.5958/0974-360X.2017.00672.2. 
10.    Sreeja, Gowrishankar, Adisha, Divya. Antibiotic Resistance-Reasons and the Most Common Resistant Pathogens - A Review. Research Journal of Pharmacy and Technology. 2017; 10(6): 1886–1890. doi.org/10.5958/0974-360X.2017.00331.6. 
11.    Mary TW, Sudha, Venkateswaramurthy, Sambath KR. A Review on The Irrational Antibiotics Usage in Pediatrics for Respiratory Tract Infections. Research Journal of Pharmacy and Technology. 2019; 12(10): 5126–5130.doi.org/10.5958/0974-360X.2019.00888.6. 
12.    Divya MJ, Vijey AM. An Overview on Antibiotic Use and Resistance. Research Journal of Pharmacy and Technology. 2018; 10(8): 2793–2796.doi.org/10.5958/0974-360X.2017.00494.2. 
13.    Saleh A-FLA, Naser R, Kagne. Determination of Antibiotic Resistant Profiles for Bacteria Isolated from Clinical Samples in Aurangabad, India. Research Journal of Pharmacy and Technology. 2020; 13(8): 3813–3816. doi.org/10.5958/0974-360X.2020.00675.7. 
14.    Moustafa S, Refa’t S, Abdel LHK, Hisham A, Momen A. Antimicrobial Susceptibility and Resistance Profile of Pseudomonas aeruginosa Isolates from Patients at an Egyptian Hospital. Research Journal of Pharmacy and Technology. 2018; 11(8): 3268-3272. doi.org/10.5958/0974-360X.2018.00601.7. 
15.    Mussema A, Beyene G, Gudina EK, Alelign D, Mohammed T, Bawore SG. Bacterial Etiology, Antimicrobial Resistance and Factors Associated with Community-Acquired Pneumonia Among Adult Hospitalized Patients in Southwest Ethiopia. Irania Journal Microbiology. 2023; 15(4): 492–502. doi.org/10.18502/ijm.v15i4.13503. 
16.    Blejan IE, Diaconu CE, Arsene AL, Udeanu DI, Ghica M, Drăgănescu D. Antibiotic Resistance in Community-Acquired Pneumonia, A Romanian Perspective. Farmacia. 2020; 68(3): 512–520. doi.org/10.31925/farmacia.2020.3.17. 
17.    Liang B, Wheeler JS, Blanchette LM. Impact of Combination Antibiogram and Related Education on Inpatient Fluoroquinolone Prescribing Patterns for Patients with Health Care–Associated Pneumonia. Annals of Pharmacotherapy. 2016; 50(3): 172–179. doi.org/10.1177/106002801562. 
18.    Dawood HN. Bacteriological Profile and Antibiogram of Bacteria in Sputum Culture of Iraqi Patients : A Retrospective Study. Ibn Al Haitham Journal for Pure and Applied Science. 2021; 34(3): 1–9. doi.org/10.30526/34.3.2672. 
19.    Shivaprakash MB, Usha MG. Bacteriological Profile and Antibiogram in Cases of Pneumonia Attending to Tertiary Care Hospital. Indian Journal of Microbiology Research. 2020; 7(4): 342–346. doi.org/10.18231/j.ijmr.2020.061. 
20.    Assefa M, Tigabu A, Belachew T, Tessema B. Bacterial Profile, Antimicrobial Susceptibility Patterns, and Associated Factors of Community-Acquired Pneumonia Among Adult Patients in Gondar, Northwest Ethiopia: A Cross-sectional Study. PLoS One. 2022; 17(1): 1–18. doi.org/10.1371/journal.pone.0262956.
21.    Fukuyama H, Yamashiro S, Kinjo K, Tamaki H, Kishaba T. Validation of Sputum Gram Stain for Treatment of Community-Acquired Pneumonia and Healthcare-Associated Pneumonia: A Prospective Observational Study. BMC Infectious Diseases. 2014; 14(534): 1–8. http://www.biomedcentral.com/1471-2334/14/534. 
22.    Marco L, Cinzia B, Grazia BM, Maria F, Jessica Z, Roberta F. Evaluation of the Vitek 2 System for Identification and Antimicrobial Susceptibility Testing of of Medically Relevant Gram-Positive Cocci. Journal of Clinical Microbiology. 2002; 40(5): 1681-1686. doi.org/10.1128/JCM.40.5.1681–1686.2002. 
23.    Siriphap A, Kitti T, Khuekankaew A, Boonlao C, Thephinlap C, Thepmalee C. High Prevalence of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates: A 5-Year Retrospective Study at a Tertiary Hospital in Northern Thailand. Frontiers in Cellular and Infection Microbiology. 2022; 8;(12) 4–11. doi.org/10.3389/fcimb.2022.955774. 
24.    Jitendranath A, Koshy S. Community-Acquired Pneumonia Due to Gram Negative Bacilli and Its Antibiotic Sensitivity Pattern in A Tertiary Care Centre. International Journal of Research in Medical Sciences. 2016; 4(8): 3121-3124. doi.org/10.18203/2320-6012.ijrms20162205. 
25.    Cheng WL, Hsueh PR, Lee CC, Li CW, Li MJ, Chang CM. Bacteremic Pneumonia Caused by Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae: Appropriateness of Empirical Treatment Matters. Journal of Microbiology, Immunology and Infection. 2016; 49(2): 208–215. doi.org/10.1016/j.jmii.2014.05.003. 
26.    Chakraborty S, Mohsina K, Sarker PK, Zahangir Alam M, Abdul Karim MI, Abu Sayem SM. Prevalence, Antibiotic Susceptibility Profiles and ESBL Production in Klebsiella pneumoniae and Klebsiella oxytoca Among Hospitalized Patients. Periodicum Biologorum. 2016; 118(1): 53–58. doi.org/10.18054/pb.v118i1.3160. 
27.    Almeida MVA, Cangussú ÍM, Carvalho A, Siqueira L, Brito ILP, Costa R. Drug Resistance, AmpC-β-Lactamase and Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Fish and Shrimp. Revista do Instituto de Medicina Tropical de São Paulo. 2017; 59(70): 1–7. doi.org/10.1590/S1678-9946201759070. 
28.    Self WH, Wunderink RG, Williams DJ, Zhu Y, Anderson EJ, Balk RA. Staphylococcus aureus Community-Acquired Pneumonia: Prevalence, Clinical Characteristics, and Outcomes. Clinical Infectious Diseases. 2016; 63(3): 300–309. doi.org/10.1093/cid/ciw300. 
29.    Cilloniz C, Dominedò C, Gabarrús A, Garcia-Vidal C, Becerril J, Tovar D. Methicillin-Susceptible Staphylococcus aureus in Community-Acquired Pneumonia: Risk Factors and Outcomes. Journal of Infection. 2021; 82(1): 76–83. doi.org/10.1016/j.jinf.2020.10.032. 
30.    Zhu Y, Huang WE, Yang Q. Clinical Perspective of Antimicrobial Resistance in Bacteria. Infection and Drug Resistance. 2022; 2(15): 735–746. doi.org/10.2147/IDR.S345574. 
31.    Birru M, Woldemariam M, Manilal A, Aklilu A, Tsalla T, Mitiku A. Bacterial Profile, Antimicrobial Susceptibility Patterns, and Associated Factors Among Bloodstream Infection Suspected Patients Attending Arba Minch General Hospital, Ethiopia. Scientific Reports. 2021; 11(15882): 1–13. doi.org/10.1038/s41598-021-95314-x.
32.    Irenge LM, Kabego L, Kinunu FB, Itongwa M, Mitangala PN, Gala JL. Antimicrobial Resistance of Bacteria Isolated from Patients with Bloodstream Infections at A Tertiary Care Hospital in the Democratic Republic of the Congo. South African Medical Journal. 2015; 105(9): 752-755. doi.reg/10.7196/SAMJnew.7937. 
33.    Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F, Saturnino C. Multidrug Resistance (MDR): A Widespread Phenomenon in Pharmacological Therapies. Molecules. 2022; 27(3): 1–18. doi.org/10.3390/molecules27030616. 
34.    Karruli A, Massa A, Bertolino L, Andini R, Sansone P, Dongiovanni S. Clinical Characteristics and Outcome of MDR/XDR Bacterial Infections in a Neuromuscular Semi-Intensive/Sub-Intensive Care Unit. Antibiotics. 2022; 11(10): 1-10. doi.org/10.3390/antibiotics11101411. 
35.    Alkofide H, Alhammad AM, Alruwaili A, Aldemerdash A, Almangour TA, Alsuwayegh A. Multidrug-Resistant and Extensively Drug Resistant Enterobacteriaceae: Prevalence, Treatments, and Outcomes – A Retrospective Cohort Study. Infection and Drug Resistance. 2020; 13(2020): 4653–4662. doi.org/10.2147/IDR.S283488. 
36.    Basak S, Singh P, Rajurkar M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. Journal of Pathogens. 2016; 1–5. doi.org/10.1155/2016/4065603. 
37.    German G, Gilmour M, Tipples G, Adam H, Almohri H, Bullard J. Canadian Recommendations for Laboratory Interpretation of Multiple or Extensive Drug Resistance in Clinical Isolates of Enterobacteriaceae, Acinetobacter Species and Pseudomonas aeruginosa. Canada Communicable Disease Report. 2018; 44(1): 29–34. doi.org/10.14745/ccdr.v44i01a07. 
38.    Yamada K, Namikawa H, Fujimoto H, Nakaie K, Takizawa E, Okada Y. Clinical Characteristics of Methicillin-Resistant Coagulase-Negative Staphylococcal Bacteremia in A Tertiary Hospital. Internal Medicine. 2017; 56(7): 781-785. doi.org/10.2169/internalmedicine.56.7715. 
39.    Siddiqui T, Sahu C, Patel SS. In Vitro Activity of Ceftaroline and Other Antimicrobial Agents Against Gram Positive Bacterial Isolates: Descriptive Study From a University Hospital. Indian Journal of Medical Microbiology. 2022; 40(1): 101–104. doi.org/10.1016/j.ijmmb.2021.08.003.
40.    Saber H, Jasni AS, Jamaluddin TZMT, Ibrahim R. A Review of Staphylococcal Cassette Chromosome mec (SCCmec) Types in Coagulase-Negative Staphylococci (CoNS) Species. The Malaysian Journal of Medical Sciences. 2017; 24(5): 7–18. doi.org/10.21315/mjms2017.24.5.2. 
41.    Montazeri EA, Seyed-Mohammadi S, Dezfuli AA, Khosravi AD, Dastoorpoor M, Roointan M. Investigation of SCCmec Types I–IV in Clinical Isolates of Methicillin-Resistant Coagulase-Negative Staphylococci in Ahvaz, Southwest Iran. Bioscience Reports. 2020; 40(5): 1-9. doi.org/10.1042/BSR20200847. 
42.    Shrestha LB, Bhattarai NR, Khanal B. Antibiotic Resistance and Biofilm Formation Among Coagulase-Negative Staphylococci Isolated From Clinical Samples at A Tertiary Care Hospital of Eastern Nepal. Antimicrobial Resistance and Infection Control. 2017; 6(89): 1–7. doi.org/10.1186/s13756-017-0251-7. 
43.    Cui J, Liang Z, Mo Z, Zhang J. The Species Distribution, Antimicrobial Resistance and Risk Factors for Poor Outcome of Coagulase-Negative Staphylococci Bacteraemia in China. Antimicrobial Resistance and Infection Control. 2019; 8(65): 1–10. doi.org/10.1186/s13756-019-0523-5. 
44.    Hassoun A, Linden PK, Friedman B. Incidence, Prevalence, and Management of MRSA Bacteremia Across Patient Populations-A Review of Recent Developments in MRSA Management and Treatment. Critical Care. 2017; 21(211): 1-10. doi.org/10.1186/s13054-017-1801-3. 
45.    Holland TL, Arnold C, Fowler VG. Clinical Management of Staphylococcus aureus Bacteremia: A Review. JAMA - Journal of The American Medical Association. 2014; 312(13): 1330-1341.doi:org/10.1001/jama.2014.9743. 
46.    Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology. 2020; 10(107): 1–11. doi:.org/10.3389/fcimb.2020.00107. 
47.    Sazdanovic P, Jankovic SM, Kostic M, Dimitrijevic A, Stefanovic S. Pharmacokinetics of Linezolid in Critically Ill Patients. Expert Opinion on Drug Metabolism & Toxicology. 2016; 12(6): 595–600. doi.org/10.1517/17425255.2016.1170807. 
48.    Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a Review of Its Properties, Function, and Use in Critical Care. Drug Design, Development and Therapy. 2018; (12): 1759–1767.doi.org/10.2147/DDDT.S164515. 
49.    Yang Q, Kamat S, Mohamed N, Valdez RR, Lin S, Su M. Antimicrobial Susceptibility Among Gram-Negative Isolates in Pediatric Patients in Latin America, Africa-Middle East, and Asia from 2016-2020 Compared to 2011-2015: Results from the ATLAS Surveillance Study. Journal of the Pediatric Infectious Diseases Society. 2023; 12(8): 459–470. doi.org/10.1093/jpids/piad055. 
50.    Alhumaid S, Al Mutair A, Al Alawi Z, Alzahrani AJ, Tobaiqy M, Alresasi AM. Antimicrobial Susceptibility of Gram-Positive and Gram-Negative Bacteria: a 5-Year Retrospective Analysis at A Multi-Hospital Healthcare System in Saudi Arabia. Annals of Clinical Microbiology and Antimicrobials. 2021; 20(43): 1–18. doi.org/10.1186/s12941-021-00450-x.
51.    Ravi P, Ravindranath C, Deepa S. Antibiotic Susceptibility Pattern of Gram-Negative Bacterial Isolates with Special Mention on Colistin Resistance from Intensive Care Unit of a Tertiary Care Hospital: A Prospective Study Assessing the Impact of Microbial Resistance on Clinical Outcomes. International Journal of Research in Medical Sciences. 2023; 11(6): 2206–2213. doi.org/10.18203/2320-6012.ijrms20231644. 
52.    El-Sokkary RH, Ramadan RA, El-Shabrawy M, El-Korashi LA, Elhawary A, Embarak S. Community-Acquired Pneumonia Among Adult Patients at an Egyptian University Hospital: Bacterial Etiology, Susceptibility Profile and Evaluation of The Response to Initial Empiric Antibiotic Therapy. Infection and Drug Resistance. 2018; 11(2018): 2141–2150. doi.org/10.2147/IDR.S182777. 
53.    Al-Tawfiq JA, Rabaan AA, Saunar JV, Bazzi AM. Antimicrobial Resistance of Gram-Negative Bacteria: A Six-Year Longitudinal Study in a Hospital in Saudi Arabia. Journal of Infection and Public Health. 2020; 13(5): 737–745. doi.org/10.1016/j.jiph.2020.01.004.





Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available