Author(s): Mithilaa Selvaraj, R Ragunathan

Email(s): mithilaaselvaraj23@gmail.com

DOI: 10.52711/0974-360X.2025.00584   

Address: Mithilaa Selvaraj1*, R Ragunathan2
1Department of Biochemistry, Sri Ramakrishna College of Arts and Science for Women, Affiliated to Bharathiar University, Coimbatore, Tamil Nadu, India.
2Department of Biotechnology, Centre for Bioscience and Nanoscience Research, Affiliated to Bharathiar University, Coimbatore, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 9,     Year - 2025


ABSTRACT:
Recent studies on bacteria and insects have shown that lactic acid bacteria (LAB) establish symbiotic relationships with various species of honey bees. Lactic acid bacteria (LAB) found in humans and other animals contribute significantly to host defense by generating antimicrobial compounds and modulating immune responses. Research has shown that LAB strains isolated from honeybees promote health and help reduce pathogen presence. Among the diverse LAB species found in various environments, Lactiplantibacillus is one of the most versatile. This research focused on isolating and identifying Lactiplantibacillus plantarum from the honey stomach of Indian honeybees (Apis cerana indica). Genomic DNA was extracted from worker honeybees, amplified through PCR, and identified as Lactiplantibacillus plantarum using 16S rRNA sequencing. The identified strain was subsequently submitted to GenBank at the National Centre for Biotechnology Information (NCBI) under accession number OQ439305, and a phylogenetic tree was developed for the isolated strain. Further, the characterization studies showed the presence of secondary low molecular peptides, which are proven to exhibit antimicrobial properties when they are exposed to some common enteric pathogens in vivo. The study was also extended to find the anticancer ability of the secondary peptides of L. plantarum by exposing them to the MCF-7 cell line, which induces overall changes through the apoptosis process. These results suggest that the honey bee gut is home to bacteria that produce important secondary peptides with antimicrobial and anticancer potential.


Cite this article:
Mithilaa Selvaraj, R Ragunathan. Molecular Identification and Characterization of Lactiplantibacillus plantarum (0Q439305) from the Honey Stomach of Apis cerana indica and its Anticancer Activity on MCF-7 Cell Line.Research Journal of Pharmacy and Technology. 2025;18(9):4069-5. doi: 10.52711/0974-360X.2025.00584

Cite(Electronic):
Mithilaa Selvaraj, R Ragunathan. Molecular Identification and Characterization of Lactiplantibacillus plantarum (0Q439305) from the Honey Stomach of Apis cerana indica and its Anticancer Activity on MCF-7 Cell Line.Research Journal of Pharmacy and Technology. 2025;18(9):4069-5. doi: 10.52711/0974-360X.2025.00584   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-4


REFERENCES:
1.    Hammes. W P. Hertel C. The Genera Lactobacillus and Carnobacterium. The Prokaryotes. (2006); https://doi.org/10.1007/0-387 30744-3-10
2.    Lebeer S. Vanderleyden J. De Keersmaecker SC. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev. 2008; 72(4): 728-64. doi: 10.1128/MMBR.00017-08
3.    van B. Peter et al Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(1): 4562-9. doi:10.1073/pnas.1000079107
4.    Fidanza. M. Panigrahi P. Kollmann. T R. Lactiplantibacillus plantarum-Nomad and Ideal Probiotic. Frontiers in microbiology. 2021; 12 (712236): https://doi.org/10.3389/fmicb.2021.712236
5.    Arena. MP. Silvain A. Normanno G. Grieco F. Drider D. Spano G. Fiocco D. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Frontiers in Microbiology. 2016; 7(4): https://doi.org/10.3389/fmicb.2016.00464
6.    Stork N. E. How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth? Annual review of entomology. (2018). 63: 31-45. https://doi.org/10.1146/annurev-ento-020117-043348
7.    Dillon. R J.  Dillon. V M. The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology. 2004; 49: 71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416
8.    Eckburg. Paul B et al Diversity of the Human Intestinal Microbial flora. Science. 2005; 308(5728): 1635–1638. https://doi.org/10.1126/science.1110591
9.    Bäckhed. F. Ley. R E. Sonnenburg. J L. Peterson. D A. Gordon J. I. Host-bacterial mutualism in the human intestine. Science. 2005; 307(5717): 1915-1920. https://doi.org/10.1126/science.1104816.
10.    Ramos. O Y. Basualdo. M. Libonatti C. Vega. M F. Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies. Journal of Applied Microbiology. 2020; 128: 1248-1260. https://doi.org/10.1111/jam.14469
11.    Gilliam. M. Identification and roles of non-pathogenic microflora associated with Honey Bees. FEMS Microbiology Letters. 2006; 155(1): 1-10. https://doi.org/10.1111/j.1574-6968.1997.tb12678.x.
12.    Murry. A C et al Inhibition of Growth of Escherichia coli, Salmonella typhimurium, and Clostridia perfringens on Chicken Feed Media by Lactobacillus salivarius and Lactobacillus plantarum.  International Journal of Poultry Science. 2004; (3) 603-607. doi:10.3923/ijps.2004.603.607
13.    Ishikawa. H. Akedo. I. Otani. T. Suzuki. T. Nakamura. T. Takeyama. I. Ishiguro. S. Miyaoka. E. Sobue. T.  Kakizoe. T. Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. International Journal of Cancer. 2005; 116. doi:10.1002/ijc.21115
14.    Seow. S W. Cai. S. Rahmat. J N. Bay. B H. Lee. Y K. Chan. Y H.  Mahendran R. Lactobacillus rhamnosus GG induces tumor regression in mice bearing orthotopic bladder tumors. Cancer science, 2010; 101(3): 751-758. https://doi.org/10.1111/j.1349-7006.2009.01426.x
15.    de Moreno de LeBlanc. A. Matar. C. Thériault. C.  Perdigón. G. Effects of milk fermented by Lactobacillus helveticus R389 on immune cells associated to mammary glands in normal and a breast cancer model. Immunobiology. 2005; 210(5): 349-358. https://doi.org/10.1016/j.imbio.2005.05.024
16.    El-Nezami. H S. Polychronaki N. N. Ma. J. Zhu H. Ling. W. Salminen. E K. Juvonen. R O. Salminen. S J. Poussa. T.  Mykkänen. H M. Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. The American journal of clinical nutrition. 2006; 83(5): 1199–1203. https://doi.org/10.1093/ajcn/83.5.1199
17.    Park. KB. Oh. SH. Kim. NS. Oh. CH. Jeon. JI Kimchi fermented in a kimchi refrigerator showed enhanced anti-cancer effects on human leukemia and gastric cancer cells (LB405). The FASEB Journal. 2014; 28 https://doi.org/10.1096/fasebj.28.1_supplement.lb405
18.    Rafter. J. Lactic acid bacteria and cancer: a mechanistic perspective. British Journal of Nutrition. 2002; 88(S1): S89–S94. https://doi.org/10.1079/bjn2002633.
19.    Gfeller. K Y. Roth. M. Meile. L. Teuber. M. Sequence and genetic organization of the 19.3-kb erythromycin- and dalfopristin-resistance plasmid pLME300 from Lactobacillus fermentum ROT1. Plasmid. 2003; 50(3): 190–201. https://doi.org/10.1016/j.plasmid.2003.08.001
20.    Parton. M. Dowsett. M. Smith. I. Studies of apoptosis in breast cancer. BMJ (Clinical research ed.). (2001); 322(7301): 1528–1532. https://doi.org/10.1136/bmj.322.7301.1528
21.    Olofsson. T C. Vásquez. A. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology. 2008; 57(4): 356–363. https://doi.org/10.1007/s00284-008-9202-0.
22.    Aween. M M. Hassan. Z. Muhialdin. B J. Eljamel. Y A. Al-Mabrok. A S.  Lani.  M N. Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in Malaysia against selected multiple antibiotic resistant (MAR) Gram-positive bacteria. Journal of Food Science. 2012; 77(7): 364-371. https://doi.org/10.1111/j.1750-3841.2012.02776.x
23.    Surve. S. Shinde. D B.  Kulkarni. R. Isolation, characterization and comparative genomics of potentially probiotic Lactiplantibacillus plantarum strains from Indian foods. Scientific reports. 2022; 12(1): 1940. https://doi.org/10.1038/s41598-022-05850-3 
24.    Le D. Bui B. Nguyen Q. Le Q. Quantification of CYFRA21-1 antigen in non-small cell lung cancer by Phage Display Real-time Immuno-PCR Method. Research Journal of Pharmacy and Technology. 2019; 12(11): 5345-5350. doi: 10.5958/0974-360X.2019.00928.4
25.    Md K. Kamrun N. Parisa S. Norhani A. Kaiser H. Mohammed F. Probiotic Potential of Lactic Acid Bacteria Isolated from Cheese, Yogurt and Poultry Faeces. Research Journal of Pharmacy and Technology. 2017; 10(9): 2991-2998. doi: 10.5958/0974-360X.2017.00530.3
26.    Tamura. K. Stecher. G.  Kumar. S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution. 2021; 38(7): 3022-3027. https://doi.org/10.1093/molbev/msab120
27.    Johney J. Sri S. Ragunathan R. Extraction of Chitin and Chitosan from Wild Type Pleurotus Spp and its Potential Application - Innovative Approach. Journal of Pure and Applied Microbiology. 2018; 12(3): 1631-1640. doi: 10.22207/JPAM.12.3.70
28.    Wiegand. I. Hilpert. K. Hancock. R E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols. 2008; 3(2): 163-175. https://doi.org/10.1038/nprot.2007.521
29.    Sasikala M. Sundaraganapathy R. Mohan S. MTT Assay on Anticancer Properties of Phytoconstituents from Ipomoea aquatica forsskal using MCF–7 cell lines for breast cancer in Women. Research Journal of Pharmacy and Technology. 2020; 13(3): 1356-1360. doi: 10.5958/0974-360X.2020.00250.4
30.    Gulbagca. F. Ozdemir. S. Gulcan. M.  Sen. F. Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon. 2019; 5(12): e02980. https://doi.org/10.1016/j.heliyon.2019.e02980
31.    Salwa H. N. Al-Rubaeꞌi. Suzanne J. Ali N. M. Al-Sharifi. The Impact of Oxidative Stress in Primary Congenital Glaucoma. Research Journal of Pharmacy and Technology. 2018; 11(11): 5013-5016. doi: 10.5958/0974-360X.2018.00914.9v
32.    Subhash V. Kavitha J. Lakshmi K. UV Spectrophotometric Quantification of Niacinamide in Pharmaceutical Dosage Form by Multivariate Calibration Technique. Research Journal of Pharmacy and Technology. 2021; 14(4): 2013-0. doi: 10.52711/0974-360X.2021.00357.
33.    Saraswathi. K. Sivaraj. C. Jenifer. A. Dhivya M. Arumugam P. Antioxidant, Antibacterial activities, GCMS and FTIR Analysis of Ethanol bark extract of Capparis sepiaria L. Research Journal of Pharmacy and Technology. 2020; 13(5): 2144-2150. doi: 10.5958/0974-360X.2020.00385.6.
34.    Mohini Anandrao Salunke, Balaji Sopanrao Wakure, Pravin Shridhar Wakte. Phytochemical, UV-VIS, and FTIR Analysis of Gracilaria foliifera. Research Journal of Pharmacy and Technology. 2023; 16(3): 1391-4. doi: 10.52711/0974-360X.2023.00229
35.    Manju Sahu, Moumita Sinha, Isukapatla Arjun Rao, Smriti Sahu, Bharati Ahirwar. Thin Layer Chromatography Analysis of Different Plant Growth Hormones. Research Journal of Pharmacy and Technology. 2017; 10(12): 4273-4281. doi: 10.5958/0974-360X.2017.00783.1
36.    Mervat H. Amr A. El-Waseif. Reem H. Abd El. Omnia M. Sabah A. Abo E. Assessment of Antibacterial, Cytotoxicity and Wound Healing Influence of Copper Nanoparticles Synthesized using Probiotic Bacteria. Research Journal of Pharmacy and Technology 2023; 16(10): 4537-2. doi: 10.52711/0974-360X.2023.00739.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available