Author(s): Tri Ana Mulyati, Juni Ekowati, Yohanes Andy Rias, Binti Mu’arofah, Fery Eko Pujiono

Email(s): nanapujiono@gmail.com , j_ekowati@yahoo.com , Yohanes.andi@iik.ac.id , binti.muarofah@iik.ac.id , ferypujiono@gmail.com

DOI: 10.52711/0974-360X.2025.00623   

Address: Tri Ana Mulyati1*, Juni Ekowati2, Yohanes Andy Rias3, Binti Mu’arofah4, Fery Eko Pujiono1
1Departement of Pharmacy, Institut Ilmu Kesehatan Bhakti Wiyata, Kediri, Indonesia.
2Departement of Pharmaceutical, Airlangga University, Surabaya, Indonesia.
3Departement of Nursing, Institut Ilmu Kesehatan Bhakti Wiyata, Kediri, Indonesia.
4Departement of Medical Laboratory Technology, Institut Ilmu Kesehatan Bhakti Wiyata, Kediri, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 9,     Year - 2025


ABSTRACT:
Zn-MOF synthesis was carried out using the solvothermal method with DMF as the solvent, and Zn-MOF was modified with AgNPs to produce Ag/Zn-MOF using ultrasonication. XRD analysis results indicate that Ag(10)/Zn-MOF and Ag(20)/Zn-MOF exhibit diffraction patterns similar to Zn-MOF but with some shifts and the addition of new peaks at 2? around 38° and 45°, characteristic of Ag2O and AgO. FTIR analysis confirms the successful synthesis of Zn-MOF, as evidenced by characteristic functional group vibrations observed in the ATR-FTIR spectrum, such as -COOsym (1584 cm-1) and -COOasym (1393 cm-1), indicating the bonding between carboxylate ligands and the central Zn metal, as well as Zn-O vibration (646 cm-1), indicating the presence of Zn4O metal clusters. After modification with AgNPs, an Ag-O peak is also detected (516 cm-1). The SEM-EDX analysis results indicate that Ag(20)/Zn-MOF has a cubic shape with 265-193nm dimensions. Its form is heterogeneous, irregular, and rough, with AgNP aggregates measuring around 20-50nm on the surface. TGA analysis results show that modifying AgNPs can enhance the thermal stability of Zn-MOF. Quantum chemical characteristics by the DFT method show that Ag/Zn-MOF is an excellent electron acceptor, which can increase the production of Reactive oxygen species (ROS), which can increase antibacterial properties.The antibacterial activity (in vitro) analysis data reveals that Ag(20)/Zn-MOF exhibits the highest inhibitory effect against ulcer-causing bacteria. In conclusion, this study demonstrates that Ag(20)/Zn-MOF is effective as an antibacterial material for diabetic ulcers.


Cite this article:
Tri Ana Mulyati, Juni Ekowati, Yohanes Andy Rias, Binti Mu’arofah, Fery Eko Pujiono. Modification of Zn-Metal Organic Framework with Nano Silver as an Antibacterial Material for Diabetic Ulcers (In vitro). Research Journal of Pharmacy and Technology. 2025;18(9):4347-7. doi: 10.52711/0974-360X.2025.00623

Cite(Electronic):
Tri Ana Mulyati, Juni Ekowati, Yohanes Andy Rias, Binti Mu’arofah, Fery Eko Pujiono. Modification of Zn-Metal Organic Framework with Nano Silver as an Antibacterial Material for Diabetic Ulcers (In vitro). Research Journal of Pharmacy and Technology. 2025;18(9):4347-7. doi: 10.52711/0974-360X.2025.00623   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-43


REFERENCES: 
1.    Kumar R, Saha P, Kumar Y, Sahana S, Dubey A, Prakash O. A review on diabetes mellitus: type1 and Type2. World J Pharm Pharm Sci. 2020; 9: 838–50. https://doi.org/10.1016/j.dsx.2018.10.008 
2.    Chaudhari A. A study to assess the knowledge regarding foot care among diabetes mellitus patients in selected hospital mehsana. Asian Journal of Nursing Education and Research. 2020; 10: 330. https://doi.org/10.5958/2349-2996.2020.00069.5 
3.    Panari H, Vegunarani M. Study on Complications of Diabetes Mellitus among the Diabetic Patients. Asian Journal of Nursing Education and Research. 2016; 6: 171. https://doi.org/10.5958/2349-2996.2016.00032.X 
4.    Logeshwary M, Somasundaram I. Res J Pharm Technol. 2020; 13: 1597. https://doi.org/10.5958/0974-360X.2020.00289.9 
5.    Logeshwary M, Somasundaram I. Effect of Bodyweight, Malnutrition and Lifestyle Modification on health related quality of life in Diabetic Foot Ulcer patients. Res J Pharm Technol. 2020; 13: 106. https://doi.org/10.5958/0974-360X.2020.00021.9 
6.    Ardila N, Maharani R, Sabella A, Negara CK. The Effect of Wound Treatment Using Honey on Colonization of Staphylococcus Aureus Bacteria in Diabetic Wounds in Patients with Diabetes Mellitus in the Work Area Banjarmasin Health Center. 2022; https://doi.org/10.5958/0974-360X.2020.00021.9 
7.    Albarrak OS. Wound Care Management Options for Diabetic Foot Ulcer. Saudi J Nurs Health Care. 2023; 6: 438–42. https://doi.org/10.36348/sjnhc.2023.v06i11.008 
8.    Thanganadar Appapalam S, Muniyan A, Vasanthi Mohan K, Panchamoorthy R. A Study on Isolation, Characterization, and Exploration of Multiantibiotic-Resistant Bacteria in the Wound Site of Diabetic Foot Ulcer Patients. Int J Low Extrem Wounds [Internet]. 2019; 20: 6–14. Available from: https://doi.org/10.1177/1534734619884430 
9.    Pujiono FE, Mulyati TA. Synthesis and Characterization of UiO-66 as a Paracetamol Absorption Material. Al-Kimia. 2019; 7: 189–97. https://doi.org/10.24252/al-kimia.v7i2.10485 
10.    Mansour O, Kawas G, Rasheed MA, Sakur AA. Applications of Metal-Organic Frameworks (MOFs) to Separation Analytical Techniques. Res J Pharm Technol. 2018; 11: 3514. https://doi.org/10.5958/0974-360X.2018.00650.9 
11.    Ediati R, Mulyati TA, Mukminin A, Sulistiono DO, Khoiroh N, Fansuri H, et al. Nanoporous Carbon Prepared with MOF-5 as a Template and Activated using KOH for Hydrogen Storage. Jurnal Kimia Valensi [Internet]. 2020; 6: 20–31. Available from: https://doi.org/10.15408/jkv.v6i1.13621 
12.    AbouAitah K, Higazy IM, Swiderska-Sroda A, Abdelhameed RM, Gierlotka S, Mohamed TA, et al. Anti-inflammatory and antioxidant effects of nanoformulations composed of metal-organic frameworks delivering rutin and/or piperine natural agents. Drug Deliv. 2021; 28: 1478–95. https://doi.org/10.1080/10717544.2021.1949073 
13.    Bashar BS, Kareem HA, Hasan YM, Ahmad N, Alshehri AM, Al-Majdi K, et al. Application of novel Fe3O4/Zn-metal organic framework magnetic nanostructures as an antimicrobial agent and magnetic nanocatalyst in the synthesis of heterocyclic compounds. Front Chem. 2022;10:1014731https://doi.org/10.3389/fchem.2022.1014731. 
14.    Li R, Chen T, Pan X. Metal–organic-framework-based materials for antimicrobial applications. ACS Nano. 2021; 15: 3808–48. https://doi.org/10.1021/acsnano.0c09617 
15.    Shen M, Forghani F, Kong X, Liu D, Ye X, Chen S, et al. Antibacterial applications of metal–organic frameworks and their composites. Compr Rev Food Sci Food Saf. 2020; 19: 1397–419. https://doi.org/10.1111/1541-4337.12515 
16.    Gaurav I, Tanuja. Green synthesis and characterization of silver nanoparticles with Rhizome extract of Curcuma longa (AgNPs-RECL) for Antimicrobial activity towards Xanthomonas and Erwinia species. Res J Pharm Technol. 2021; 14: 325–30. https://doi.org/10.5958/0974-360X.2021.00060.3 
17.    Asha MA, Senthilkumar RS. Green synthesis and characterization of silver nanoparticles from Ocimum basilicum and their antimicrobial antioxidant and anticancer activity. Res J Pharm Technol. 2020; 13: 5711–5. https://doi.org/10.5958/0974-360X.2020.00994.4 
18.    Akbarzadeh F, Motaghi M, Chauhan NPS, Sargazi G. A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: design, characterization and a high performance application. Heliyon. 2020; 6: e03231. https://doi.org/10.1016/j.heliyon.2020.e03231 
19.    Shakya S, He Y, Ren X, Guo T, Maharjan A, Luo T, et al. Ultrafine silver nanoparticles embedded in cyclodextrin metal‐organic frameworks with GRGDS functionalization to promote antibacterial and wound healing application. Small. 2019; 15: 1901065. https://doi.org/10.1002/smll.201901065 
20.    Wu YM, Zhao PC, Jia B, Li Z, Yuan S, Li CH. A silver-functionalized metal–organic framework with effective antibacterial activity. New Journal of Chemistry. 2022; 46: 5922–6. https://doi.org/10.1039/D1NJ06183F 
21.    Adole VA, Bukane AR, Waghchaure RH, Shinde RS, Jagdale BS. Computational Study on Molecular Structure, UV-Visible and Vibrational Spectra and Frontier Molecular Orbital Analysis of (E)-7-((2-Chloroquinolin-3-yl)methylene)-1,2,6,7-tetrahydro-8H-indeno[5,4-b]furan-8-one. Res J Pharm Technol. 2022;1101–8. https://doi.org/10.52711/0974-360X.2022.00184 
22.    Pawar RR, Nahire SB. Investigation, correlation and DFT study for solubility of malonic acid in water + methanol and water + ethanol binary solvents at T = 293.15 to 313.15 K. Res J Pharm Technol. 2021; 14: 1226–32. https://doi.org/10.5958/0974-360X.2021.00218.3 
23.    Ghammamy S, Qaitmas NA, Lashgari A. Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for the Two New Halo Organic Compounds. Asian Journal of Research in Chemistry. 2015; 8: 60. https://doi.org/10.5958/0974-4150.2015.00013.9 
24.    Hu Y, Yang H, Wang R, Duan M. Fabricating Ag@MOF-5 nanoplates by the template of MOF-5 and evaluating its antibacterial activity. Colloids Surf A Physicochem Eng Asp [Internet]. 2021; 626: 127093. Available from: https://doi.org/10.1016/j.colsurfa.2021.127093 
25.    Sacourbaravi R, Ansari-Asl Z, Kooti M, Nobakht V, Darabpour E. Fabrication of Ag NPs/Zn-MOF Nanocomposites and Their Application as Antibacterial Agents. J Inorg Organomet Polym Mater [Internet]. 2020; 30: 4615–21. Available from: https://doi.org/10.1007/s10904-020-01601-x 
26.    Moghadam G, Abdi J, Banisharif F, Khataee A, Kosari M. Nanoarchitecturing hybridized metal-organic framework/graphene nanosheet for removal of an organic pollutant. J Mol Liq [Internet]. 2021; 341: 117323. Available from: https://doi.org/10.1016/j.molliq.2021.117323 
27.    Khan MS, Azam M, Khan MN, Syed F, Ali SHB, Malik TA, et al. Identification of contributing factors, microorganisms and antimicrobial resistance involved in the complication of diabetic foot ulcer treatment. Microb Pathog [Internet]. 2023; 184: 106363. Available from: https://doi.org/10.1016/j.micpath.2023.106363 
28.    Bouharkat B, Tir Touil A, Mullié C, Chelli N, Meddah B. Bacterial ecology and antibiotic resistance mechanisms of isolated resistant strains from diabetic foot infections in the north west of Algeria. J Diabetes Metab Disord. 2020; 19: 1261–71. https://doi.org/10.1007/s40200-020-00639-5 
29.    Surya SP, Dewi KP, Regina R. Cutaneous candidiasis mimicking inverse psoriasis lesion in a type 2 diabetes mellitus patient. Journal of General-Procedural Dermatology and Venereology Indonesia. 2020; 5: 7. https://doi.org/10.19100/jdvi.v5i1.164 
30.    Hussain MSB, Hiremath MB. In Vitro Evaluation Of Aegle Marmelos Leaf Extracts On Foot Ulcer And Urinary Tract Infected Pathogens From Diabetic Patients. Asian Journal of Pharmaceutical and Clinical Research. 2020; 13: 229–33. https://doi.org/10.22159/ajpcr.2020.v13i1.36514 
31.    Subbu Lakshmi S, Chelladurai G, Suresh B. In vitro studies on medicinal plants used against bacterial diabetic foot ulcer (BDFU) and urinary tract infected (UTI) causing pathogens. Journal of Parasitic Diseases. 2016; 40: 667–73. https://doi.org/10.1007/s12639-014-0555-y 
32.    Prasathkumar M, Raja K, Vasanth K, Khusro A, Sadhasivam S, Sahibzada MUK, et al. Phytochemical screening and in vitro antibacterial, antioxidant, anti-inflammatory, anti-diabetic, and wound healing attributes of Senna auriculata (L.) Roxb. leaves. Arabian Journal of Chemistry. 2021; 14: 103345. https://doi.org/10.1016/j.arabjc.2021.103345 
33.    Akbarzadeh F, Motaghi M, Chauhan NPS, Sargazi G. A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: design, characterization and a high performance application. Heliyon. 2020; 6. https://doi.org/10.1016/j.heliyon.2020.e03231 
34.    Jasim Al-Khafaji HH, Alsalamy A, Abed Jawad M, Ali Nasser H, Dawood AH, Hasan SY, et al. Synthesis of a novel Cu/DPA-MOF/OP/CS hydrogel with high capability in antimicrobial studies. Front Chem [Internet]. 2023;11. Available from: https://doi.org/10.3389/fchem.2023.1236580 
35.    Tian F, Weng R, Huang X, Chen G, Huang Z. Fabrication of Silver-Doped UiO-66-NH2 and Characterization of Antibacterial Materials. Coatings. 2022; 12: 1939. https://doi.org/10.3390/coatings12121939 
36.    Arul P, Gowthaman NSK, John SA, Lim HN. Ultrasonic Assisted Synthesis of Size-Controlled Cu-Metal–Organic Framework Decorated Graphene Oxide Composite: Sustainable Electrocatalyst for the Trace-Level Determination of Nitrite in Environmental Water Samples. ACS Omega [Internet]. 2020; 5: 14242–53. Available from: https://doi.org/10.1021/acsomega.9b03829 
37.    Pereira de Figueiredo JA, Moreno Zapata MJ, Amorim LS, de Oliveira Neto JA, Miquita DR, Soares EA, et al. Morphological and Structural Characterization of (Pt, Au, and Ag) Nanoparticle/Zn-MOF-74 Composites. ACS Omega [Internet]. 2024; 9: 21939–47. Available from: https://doi.org/10.1021/acsomega.3c09973 
38.    Mao F, Su Y, Sun X, Li B, Liu PF. Cu(I) Metal–Organic Framework Composites with AgCl/Ag Nanoparticles for Irradiation-Enhanced Antibacterial Activity against E. coli. ACS Omega [Internet]. 2023; 8: 2733–9. Available from: https://doi.org/10.1021/acsomega.2c07415 
39.    Hootifard G, Sheikhhosseini E, Ahmadi SA, Yahyazadehfar M. Synthesis and characterization of CO-MOF@ Ag2O nanocomposite and its application as a nano-organic catalyst for one-pot synthesis of pyrazolopyranopyrimidines. Sci Rep. 2023; 13: 17500. https://doi.org/10.1038/s41598-023-44667-6 
40.    Dahlan I, Keat OH, Aziz HA, Hung YT. Synthesis and characterization of MOF-5 incorporated waste-derived siliceous materials for the removal of malachite green dye from aqueous solution. Sustain Chem Pharm. 2023; 31: 100954. https://doi.org/10.1016/j.scp.2022.100954 
41.    Gyanendra K, Dhanraj TM. Sustainable synthesis of MOF-5@ GO nanocomposites for efficient removal of rhodamine B from water. ACS omega. 6, 14 (2021) 9587-9599. https://doi.org/10.1021/acsomega.1c00143 
42.    Villarroel-Rocha D, Bernini MC, Arroyo-Gómez JJ, Villarroel-Rocha J, Sapag K. Synthesis of MOF-5 using terephthalic acid as a ligand obtained from Polyethylene Terephthalate (PET) waste and its test in CO2 adsorption. Brazilian Journal of Chemical Engineering. 2022; 39: 949–59. https://doi.org/10.1007/s43153-021-00192-5 
43.    Cai M, Qin L, You L, Yao Y, Wu H, Zhang Z, et al. Functionalization of MOF-5 with mono-substituents: effects on drug delivery behavior. RSC Adv. 2020; 10: 36862–72. DOI. https://doi.org/10.1039/D0RA06106A 
44.    Zhou D, Wang L, Chen X, Wei X, Liang J, Tang R, et al. Reaction mechanism investigation on the esterification of rosin with glycerol over annealed Fe3O4/MOF-5 via kinetics and TGA-FTIR analysis. Chemical Engineering Journal. 2020; 401: 126024. https://doi.org/10.1016/j.cej.2020.126024 
45.    Kasula M, Le T, Thomsen A, Rabbani Esfahani M. Silver metal organic frameworks and copper metal organic frameworks immobilized on graphene oxide for enhanced adsorption in water treatment. Chemical Engineering Journal [Internet]. 2022; 439: 135542. Available from: https://doi.org/10.1016/j.cej.2022.135542 
46.    Hootifard G, Sheikhhosseini E, Ahmadi SA, Yahyazadehfar M. Synthesis and characterization of CO-MOF@ Ag2O nanocomposite and its application as a nano-organic catalyst for one-pot synthesis of pyrazolopyranopyrimidines. Sci Rep. 2023; 13: 17500. https://doi.org/10.1038/s41598-023-44667-6 
47.    Diamond BG, Payne LI, Hendon CH. Ligand field tuning of d-orbital energies in metal-organic framework clusters. Commun Chem. 2023; 6: 67. https://doi.org/10.1038/s41598-023-44667-6 
48.    Ding M, Cai X, Jiang HL. Improving MOF stability: approaches and applications. Chem Sci [Internet]. 2019; 10: 10209–30. Available from: https://doi.org/10.1039/C9SC03916C 
49.    Usman M, Khan RA, Alsalme A, Alharbi W, Alharbi KH, Jaafar MH, et al. Structural, Spectroscopic, and Chemical Bonding Analysis of Zn(II) Complex [Zn(sal)](H2O): Combined Experimental and Theoretical (NBO, QTAIM, and ELF) Investigation. Crystals (Basel) [Internet]. 2020; 10: 259. Available from: https://doi.org/10.3390/cryst10040259 
50.    Miar M, Shiroudi A, Pourshamsian K, Oliaey AR, Hatamjafari F. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[ d ]thiazole-2(3 H )-imine and its para -substituted derivatives: Solvent and substituent effects. J Chem Res [Internet]. 2021; 45: 147–58. Available from: https://doi.org/10.1177/1747519820932091 
51.    Gounhalli SG, Basavaraj S, Hanagodimath SM. Spectroscopic analysis of NMR, IR, Raman and UV-Visible, HOMO-LUMO, ESP and Mulliken charges of coumarin derivative by density functional theory. Journal of the Maharaja Sayajirao University of Baroda ISSN. 2021; 25: 0422. 
52.    Vaishampayan A, Grohmann E. Antimicrobials Functioning through ROS-Mediated Mechanisms: Current Insights. Microorganisms [Internet]. 2021;10:61. Available from: https://doi.org/10.3390/microorganisms10010061 
53.    Atlaw A, Kebede HB, Abdela AA, Woldeamanuel Y. Bacterial isolates from diabetic foot ulcers and their antimicrobial resistance profile from selected hospitals in Addis Ababa, Ethiopia. Front Endocrinol (Lausanne). 2022; 13: 987487. https://doi.org/10.3389/fendo.2022.987487 
54.    Adeyemo AT, Kolawole B, Rotimi VO, Aboderin AO. Multicentre study of the burden of multidrug-resistant bacteria in the aetiology of infected diabetic foot ulcers. Afr J Lab Med [Internet]. 2021; 10: 1–10. Available from: https://doi.org/10.4102/ajlm.v10i1.1261 
55.    Barrigah-Benissan K, Ory J, Dunyach-Remy C, Pouget C, Lavigne JP, Sotto A. Antibiofilm properties of antiseptic agents used on Pseudomonas aeruginosa isolated from diabetic foot ulcers. Int J Mol Sci. 2022; 23: 11270. https://doi.org/10.3390/ijms231911270 
56.    Stańkowska M, Garbacz K, Korzon-Burakowska A, Bronk M, Skotarczak M, Szymańska-Dubowik A. Microbiological, Clinical and Radiological Aspects of Diabetic Foot Ulcers Infected with Methicillin-Resistant and -Sensitive Staphylococcus aureus. Pathogens [Internet]. 2022; 11: 701. Available from: https://doi.org/10.3390/pathogens11060701 
57.    Liu Y, Zhou L, Dong Y, Wang R, Pan Y, Zhuang S, et al. Recent developments on MOF-based platforms for antibacterial therapy. RSC Med Chem. 2021; 12: 915–28. https://doi.org/10.1039/D0MD00416B 
58.    Bhardwaj N, Pandey SK, Mehta J, Bhardwaj SK, Kim KH, Deep A. Bioactive nano-metal–organic frameworks as antimicrobials against Gram-positive and Gram-negative bacteria. Toxicol Res (Camb) [Internet]. 2018; 7: 931–41. Available from: https://doi.org/10.1039/C8TX00087E 

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available