Author(s): Adita A. Permanasari, Himatul Aliyah, Hilkatul Ilmi, Achmad F. Hafid, Tutik S. Wahyuni, Suciati, Firman Wicaksana, Lidya Tumewu, Aty Widyawaruyanti

Email(s): aty-w@ff.unair.ac.id

DOI: 10.52711/0974-360X.2025.00631   

Address: Adita A. Permanasari1, Himatul Aliyah1, Hilkatul Ilmi1, Achmad F. Hafid1,2, Tutik S. Wahyuni1,2, Suciati1,2, Firman Wicaksana1, Lidya Tumewu1, Aty Widyawaruyanti1,2*
1Center for Natural Product Medicine Research and Development (C-NPMRD), Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, East Java, Indonesia.
2Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, East Java, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 9,     Year - 2025


ABSTRACT:
Hepatitis C is a liver disease caused by the Hepatitis C virus (HCV), an RNA virus which is known for its high mutation rate due to a lack of proofreading activity. To date, HCV has been classified into eight genotypes and 93 subtypes. The first major HCV epidemic occurred between the 1930s and 1960s. The standard treatment for HCV is direct-acting antiviral drugs (DAAs), which have a successful rate of 95% among HCV patients. However, there are still found resistance-associated substitutions (RASs) that indicate the challenge to eliminate this disease is still required. This study screened 54 extracts from ten Artocarpus species for anti-HCV activity. The extracts, prepared using N-hexane, dichloromethane, and methanol were tested for their ability to inhibit HCV in Huh7it-1 cells and JFH1a HCV. Furthermore, Artoserichalcone A, B, and C from the Artocarpus sericicarpus (A. sericicarpus) have been subjected to antiHCV assay. The inhibition measurement was detected by DAB staining for infected cells whereas the toxicity assays were conducted using MTT assay. The result of the study revealed that 15 extracts exhibited inhibitory activity against HCV, with six extracts showed a selectivity index (SI) greater than 10. The highest selectivity index score, 85.30, was observed in the methanol extract of A. sericicarpus. Furthermore, the antiHCV screening activity of Artoserichalcone A, B, and C which have been isolated from A. sericicarpus showed the reduction of HCV infection at a single concentration of 10µg/mL by 87.67±3.88%; 70.55±4.84%; and 81.51±0.97%, respectively. These results indicate that Artocarpus sericicarpus is a promising source of natural antiviral therapeutic agents against HCV and its compounds Artoserichalcone A, B, and C inhibited HCV infection by more than 70 percent at a concentration of 10µg/mL. In silico study revealed that Artoserichalcone A-C demonstrated a deeply binding interaction with NS3 protease of HCV.


Cite this article:
Adita A. Permanasari, Himatul Aliyah, Hilkatul Ilmi, Achmad F. Hafid, Tutik S. Wahyuni, Suciati, Firman Wicaksana, Lidya Tumewu, Aty Widyawaruyanti. Antiviral Activity of the Artocarpus Genus Extracts and Isolated Compounds Artoserichalcone A, B, and C against Hepatitis C: In vitro and in Silico Model. Research Journal of Pharmacy and Technology. 2025;18(9):4401-8. doi: 10.52711/0974-360X.2025.00631

Cite(Electronic):
Adita A. Permanasari, Himatul Aliyah, Hilkatul Ilmi, Achmad F. Hafid, Tutik S. Wahyuni, Suciati, Firman Wicaksana, Lidya Tumewu, Aty Widyawaruyanti. Antiviral Activity of the Artocarpus Genus Extracts and Isolated Compounds Artoserichalcone A, B, and C against Hepatitis C: In vitro and in Silico Model. Research Journal of Pharmacy and Technology. 2025;18(9):4401-8. doi: 10.52711/0974-360X.2025.00631   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-9-51


REFERENCES: 
1.    Campollo O. Amaya G. McCormick PA. Milestones in the discovery of hepatitis C. World J Gastroenterol. 2022; 28(37): 5395-5402. doi.org/10.3748/wjg.v28.i37.5395. 
2.    Stasi C. Milli C. Voller F. Silvestri C. The Epidemiology of Chronic Hepatitis C: Where We Are Now. Livers. 2024; 4(2): 172-181. doi.org/10.3390/livers4020013 
3.    Cheung MCM. Walker AJ. Hudson BE. Verma S. McLauchlan J. Mutimer DJ. Brown A et al. HCV Research UK. Outcomes after successful direct-acting antiviral therapy for patients with chronic hepatitis C and decompensated cirrhosis. J Hepatol. 2016; 65(4): 741-747. doi.org/10.1016/j.jhep.2016.06.019. 
4.    Zeng H. Li L. Hou Z. Zhang Y. Tang Z. Liu S. Direct-acting Antiviral in the Treatment of Chronic Hepatitis C: Bonuses and Challenges. Int J Med Sci. 2020; 17(7): 892-902. doi.org/10.7150/ijms.43079. 
5.    Keikha M. Eslami M. Yousefi B. Ali-Hassanzadeh M. Kamali A. Yousefi M. Karbalaei M. HCV genotypes and their determinative role in hepatitis C treatment. Virusdisease. 2020; 31(3): 235-240. doi.org/10.1007/s13337-020-00592-0.
6.    Darling Mackenzie. Eliminating Hepatitis C Among Vulnerable Populations: The Vital Role That Emerging Long-Acting Treatments Can Play. O’Neill Institute for National and Global Health Law. 2023; 25. https://oneill.law.georgetown.edu/eliminating-hepatitis-c-among-vulnerable-populations-the-vital-role-that-emerging-long-acting-treatments-can-play/ 
7.    Aldunate F. Echeverría N. Chiodi D. López P. Sánchez-Cicerón A. Soñora M. Cristina J et al. Resistance-associated substitutions and response to treatment in a chronic hepatitis C virus infected-patient: an unusual virological response case report. BMC Infect Dis. 2021; 21(1): 387. doi.org/10.1186/s12879-021-06080-0. 
8.    Spengler U. Direct antiviral agents (DAAs) - A new age in the treatment of hepatitis C virus infection. Pharmacology and Therapeutics. 2018; 183. 118-126. doi.org/10.1016/j.pharmthera.2017.10.009.
9.    Parmar P. Shafran SD. Borgia SM. Doucette K. Cooper CL. Hepatitis C direct-acting antiviral outcomes in patients 75 years and older. JGH Open. 2021; 5(2). 253-257. doi.org/10.1002/jgh3.12480.
10.    Wahyuni TS. Permanasari AA. Widyawaruyanti A. Hotta H. Aoki-Utsubo C. Hafid AF. Antiviral activity of Indonesian medicinal plants against hepatitis B virus. Pharmacognosy Journal. 2020; 12(5). 1108-1114. doi.org/10.5530/pj.2020.12.157
11.    Marhaeny HD. Widyawaruyanti A. Widiandani T. Fuad Hafid A. Wahyuni T. S. Phyllanthin and hypophyllanthin. the isolated compounds of Phyllanthus niruri. inhibit the protein receptor of the coronavirus (COVID-19) through an insilico approach. Journal of Basic and Clinical Physiology and Pharmacology. 2021; 32(4). 809-815. doi.org/10. 1515/jbcpp-2020-0473
12.    Widyawaruyanti A. Tanjung M. Permanasari AA. Saputri R. Tumewu L. Adianti M. Alkaloid and benzopyran compounds of Melicope latifolia fruit exhibit anti-hepatitis C virus activities. BMC Complementary Medicine and Therapies. 2021; 21(1). doi.org/10.1186/s12906-021-03202-8
13.    Ben-Shabat S. Yarmolinsky L. Porat D. Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery and Translational Research. 2020; 10(2): 354-367. doi.org/10.1007/s13346-019-00691-6
14.    Hassan AA. Asim N. Sadique AJ. Shahnaz S. Mohammed AB. Hafiz AM. Abdulkarim M. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Frontiers in Immunology. 2021; 12. doi.org/10.3389/fimmu.2021.637553
15.    Kim CH. Anti-SARS-CoV-2 natural products as potentially therapeutic agents. Frontiers in Pharmacology. 2021; 12. doi.org/10.3389/fphar.2021.590509
16.    Romero MR. Efferth T. Serrano MA. Castaño B. Macias RI. Briz O. Marin JJ. Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an "in vitro" replicative system. Antiviral Research. 2005; 68(2). 75-83. doi.org/10.1016/j.antiviral.2005.07.005
17.    Efferth T. Romero MR. Wolf DG. Stamminger T. Marin JJG. Marschall M. The antiviral activities of artemisinin and artesunate. Clinical Infectious Diseases. 2008; 47(6). 804–811. doi.org/10.1086/591195
18.    Di Petrillo A. Orrù G. Fais A. Fantini MC. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytotherapy Research. 2022; 36(1). 266-278. doi.org/10.1002/ptr.7309
19.    Mehrbod P. Hudy D. Shyntum D. Markowski J. Łos MJ. Ghavami S. Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomolecules. 2020; 11(1). 10. doi.org/10.3390/biom11010010
20.    Ee GCL. Teo SH. Rahmani M. Lim CK. Lim YM. Go R. Artomandin. a new xanthone from Artocarpus kemando (Moraceae). Natural Product Research. 2011; 25(10). 995-1003. doi.org/10.1080/14786419.2010.534471
21.    Hakim EH. Achmad SA. Juliawaty LD. Makmur L. Syah YM. Aimi N. Kitajima M et al. Prenylated flavonoids and related compounds of the Indonesian Artocarpus (Moraceae). Journal of Natural Medicines. 2006; 161–184. doi.org/10.1007/s11418-006-0048-0
22.    Buddhisuharto AK. Pramastya H. Insanu M. Fidrianny I. An updated review of phytochemical compounds and pharmacology activities of Artocarpus genus. Review. 2021; 11(6). 14898-14905. doi.org/10.33263/BRIAC116.1489814905
23.    Sumesh S Shah, Amit Gupta, Shweta Karne, Bharat Shinde. Immunological evaluation of Artocarpus heterophyllus for determining its antimicrobial and anti-inflammatory activity. Asian J. Pharm. Res. 2017; 7(2): 106-110.
24.    Dewi Pertiwi, Rika Hartati, Elin Julianti, Irda Fidrianny. Study Antioxidant and Antibacterial activity of Artocarpus: A Review. Research Journal of Pharmacy and Technology. 2023; 16(5): 2531-6.
25.    Indranil Chanda, Smriti Rekha Chanda , Sadhan Kr Dutta. Anti-inflammatory Activity of a Protease Extracted from the Fruit Stem Latex of the Plant Artocarpus heterophyllus Lam. Research J. Pharmacology and Pharmacodynamics. 2009; 1(2): 70-72
26.    Mohammed Haleel P M , Rashid K, C. Senthil Kumar. Artocarpus heterophyllus: Review Study on Potential Activities. Res. J. Pharmacology and Pharmacodynamics. 2018; 10(1): 24-28.
27.    Permanasari AA. Aoki-Utsubo C. Wahyuni TS. Tumewu L. Adianti M. Widyawaruyanti A. Hotta H et al. An in vitro study of an Artocarpus heterophyllus substance as a hepatitis C antiviral and its combination with current anti-HCV drugs. BMC Complement Med Ther. 2021; 21(1): 260. doi.org/10.1186/s12906-021-03408-w. 
28.    Sasikala M, Sundaraganapathy R, Mohan S. MTT assay on anticancer properties of phytoconstituents from Ipomoea aquatica Forssk. using MCF–7 cell lines for breast cancer in women. Res J Pharm Technol. 2020; 13(3): 1356-60. doi:10.5958/0974-360X.2020.00250.4.
29.    Wahyuni TS. Tumewu L. Permanasari AA. Aoki- Utsubo C. Widyawaruyanti A. Hafid AF. The Phytochemistry Profile of Piper Betle Extract and Its Activity Against Hepatitis C Virus. Indonesian Journal of Pharmacy. 2024; 35(1). 74-82. doi.org/10.22146/ijp.7071
30.    Aoki-Utsubo C. Kameoka M. Deng L. Hanafi M. Dewi BE. Sudarmono P. Wakita T et al. Statins enhance extracellular release of hepatitis C virus particles through ERK5 activation. Microbiol Immunol. 2024; 29. doi.org/10.1111/1348-0421.13166. 
31.    Tumewu L. Ilmi H. Kartika Sari D. Permanasari AA. Khairun Nisa H. Saputri RD. Tjahjandarie TS et al. Three new dihydrochalcones from the leaves of Artocarpus sericicarpus Jarrett and their activity against Plasmodium falciparum. Nat Prod Res. 2024; 1: 1-9. doi.org/10.1080/14786419.2024.2308726. 
32.    Liu YT. Ju Y. Qin X.M. Studies on the compatibility mechanism and material basis of Danggui Buxue Decoction against anemia mice using metabonomics and network pharmacology. J. Pharm. Pharmacol. 2021; 73, 767–777. https://doi.org/10.1093/jpp/rgab016
33.    Veeresham. C. Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology and Research. 2012; 3(4). 200-201. doi.org/10.4103/2231-4040.104709
34.    Boora S. Khan A. Soniya K. Yadav S. Kaushik S. Kumar R. Chhikara S. Kaushik S. Antiviral potential of medicinal plants against influenza viruses: A systematic review. Res J Pharm Technol. 2023; 16(3): 1503-3. doi:10.52711/0974-360X.2023.00247.
35.    Gadge SS. Antiviral and immunity-modulating natural herbs in the prevention of COVID-19. Res J Pharmacogn Phytochem. 2021; 13(2): 81-4. doi:10.52711/0975-4385.2021.00014.
36.    Bajes HR. Oran SA. Al-Dujaili EA. Investigating the anti-viral and anti-bacterial activities of Jordanian medicinal plants: A narrative review. Res J Pharm Technol. 2022; 15(1): 127-6. doi:10.52711/0974-360X.2022.00021.
37.    Kharisma VD. Ansori ANM. Murtadlo AAA. Rebezov M. Maksimiuk N. Burkov P. Derkho M. et al. Revealing novel antiretroviral candidate from Garcinia mangostana L. against HIV-1 infection via reverse transcriptase inhibition: In silico study. Res J Pharm Technol. 2024; 17(4): 1777-3. doi:10.52711/0974-360X.2023.00817.
38.    Jaichand J. Sabu KK. Iyer TV. Cytotoxicity studies and antiviral activity of Sesbania grandiflora. Res J Pharm Technol. 2024; 17(6): 2839-5. doi:10.52711/0974-360X.2024.00446.
39.    Suciati S. Laili ER. Haula H. Tumewu L. Nuengchamnong N. Suphrom N. Widyawaruyanti A. Phytoconstituents, antioxidant, and cholinesterase inhibitory activities of the leaves and stem extracts of Artocarpus sericicarpus. Pharmacia. 2024; 71: 1-8. doi:10.3897/pharmacia.71.e112499.
40.    Puspitasari R. Wahyuni TS. Hafid AF. Permanasari AA. Tumewu L. Widyawaruyanti A. Anti-Hepatitis C Virus Activity of Various Indonesian Plants from Balikpapan Botanical Garden. East Borneo. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia. 2022; 9(1). 48–54. doi.org/10.20473/jfiki.v9i12022.48-54
41.    Umar AB. Uzairu A. Shallangwa GA. Uba S. Docking-based strategy to design novel flavone-based arylamides as potent V600E-BRAF inhibitors with prediction of their drug-likeness and ADMET properties. Bull Natl Res Cent [Internet]. 2020; 44(1). https://doi.org/10.1186/s42269-020-00432-7
42.    Ejeh S. Uzairu A. Shallangwa GA. Abechi SE. Computational insight to design new potential hepatitis C virus NS5B polymerase inhibitors with drug-likeness and pharmacokinetic ADMET parameters predictions. Futur J Pharm Sci [Internet]. 2021; 7(1). https://doi.org/10.1186/s43094-021-00373-6
43.    Lohmann V. Körner F. Koch J-O. Herian U. Theilmann L. Bartenschlager R. Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. Virology. 1995; 208(1): 136-49. https://www.pnas.org/doi/10.1073/pnas.90.22.10773
44.    Raney KD. Sharma SD. Moustafa IM. Cameron CE. Hepatitis C virus non-structural protein 3 (HCV NS3): a multifunctional antiviral target. J Biol Chem. 2010; 285(30): 22725-31. doi: 10.1074/jbc.R110.125294.
45.    Salam KA. Akimitsu N. Hepatitis C virus NS3 inhibitors: current and future perspectives. Biomed Res Int. 2013; 467869. doi: 10.1155/2013/467869.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available