Author(s): Ligang Shan, Suriyakala Perumal Chandran

Email(s): suriyakala@lincoln.edu.my

DOI: 10.52711/0974-360X.2026.00025   

Address: Ligang Shan, Suriyakala Perumal Chandran*
Faculty of Medicine, Lincoln University College, Petaling Jaya, 47301, Malaysia.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Introduction: The following study has discussed the Maternal polyunsaturated fatty acids (PUFAs), mainly the docosahexaenoic acid (DHA) to arachidonic acid (AA) ratio, that plays a critical role in fetal growth and gestational well-being. Imbalances in omega-3 and omega-6 fatty acids can influence inflammatory paths and sleep quality, which are important causes of gestational length and pregnancy results. Aim: The aim of this study is to investigate the mechanistic paths connecting maternal PUFA status with gestational length, focusing on the mediating effects of inflammation and sleep quality. Method: This cross-sectional observational study involved 100 pregnant women, grouped by their RBC DHA:AA ratios into High PUFA (=4.0) and Low PUFA (<4.0) categories. Informationwascomposed during the 2nd trimester and included demographic, clinical, and biochemical characteristics. Sleep quality, depressive symptoms, inflammatory markers, and gestational outcomes were analysed using statistical methods to identify associations between PUFA levels and maternal health indicators. Results: The results revealed significant differencesbetween the High PUFA and Low PUFA groups in pre-pregnancy BMI (p < 0.001), sleep quality (PSQI: p < 0.001), and inflammatory markers such as CRP (p < 0.001). Significant correlations were observed between RBC DHA:AA ratios and IL-8 (r = -0.7991, p < 0.0001), PSQI scores (r = -0.4902, p < 0.0001), and gestational length (r = 0.5961, p < 0.0001), indicating positive effects of higher DHA:AA ratios. Conclusion: This study concluded that the optimizing maternal PUFA profiles that increase the DHA intake can positively affect pregnancy results by mitigating inflammation, enhancing sleep quality, and extending gestational length.


Cite this article:
Ligang Shan, Suriyakala Perumal Chandran. Mechanistic Pathways Linking Maternal PUFA Status with Gestational Length: The Mediating Roles of Inflammation and Sleep Quality. Research Journal of Pharmacy and Technology. 2026;19(1):160-8. doi: 10.52711/0974-360X.2026.00025

Cite(Electronic):
Ligang Shan, Suriyakala Perumal Chandran. Mechanistic Pathways Linking Maternal PUFA Status with Gestational Length: The Mediating Roles of Inflammation and Sleep Quality. Research Journal of Pharmacy and Technology. 2026;19(1):160-8. doi: 10.52711/0974-360X.2026.00025   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2026-19-1-25


REFERENCES:
1.    Nilsson A et al. Influence of human milk and parenteral lipid emulsions on serum fatty acid profiles in extremely preterm infants. JPEN J Parenter Enteral Nutr. 2018; 43(1): 152–61. doi:10.1002/jpen.1172
2.    Moon R et al. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J Clin Endocrinol Metab. 2013; 98(1): 299–307. doi:10.1210/jc.2012-2482
3.    Zhao J et al. Circulating docosahexaenoic acid levels are associated with fetal insulin sensitivity. PLoS One. 2014; 9(1): e85054. doi:10.1371/journal.pone.0085054
4.    Hellström A et al. Docosahexaenoic acid and arachidonic acid levels are associated with early systemic inflammation in extremely preterm infants. Nutrients. 2020; 12(7): 1996. doi:10.3390/nu12071996
5.    Gelaye B et al. Poor sleep quality, antepartum depression and suicidal ideation among pregnant women. J Affect Disord. 2017; 209: 195–200. doi:10.1016/j.jad.2016.11.020
6.    Christian L et al. Polyunsaturated fatty acid (PUFA) status in pregnant women: Associations with sleep quality, inflammation, and length of gestation. PLoS One. 2016; 11(2): e0148752. doi:10.1371/journal.pone.0148752
7.    Robertson R et al. Maternal omega-3 fatty acids regulate offspring obesity through persistent modulation of gut microbiota. Microbiome. 2018; 6(1): 1. doi:10.1186/s40168-018-0476-6
8.    Strain J et al. Maternal PUFA status but not prenatal methylmercury exposure is associated with children's language functions at age five years in the Seychelles. J Nutr. 2012; 142(11): 1943–9. doi:10.3945/jn.112.163493
9.    Vrijkotte T et al. Maternal long-chain polyunsaturated fatty acid status during early pregnancy: Association with child behavioral problems and the role of autonomic nervous system activity. Clin Nutr. 2021; 40(5): 3338–45. doi:10.1016/j.clnu.2020.11.002
10.    Phang M, Skilton M. Marine omega-3 fatty acids, complications of pregnancy and maternal risk factors for offspring cardio-metabolic disease. Mar Drugs. 2018; 16(5): 138. doi:10.3390/md16050138
11.    Torquato P et al. Nutritional and lipidomics biomarkers of docosahexaenoic acid-based multivitamin therapy in pediatric NASH. Sci Rep. 2019; 9(1): 1. doi:10.1038/s41598-018-37209-y
12.    Okun M et al. Sleep disturbances in depressed and nondepressed pregnant women. Depress Anxiety. 2011; 28(8): 676–85. doi:10.1002/da.20828
13.    Fan R et al. Maternal n-3 PUFA supplementation promotes fetal brown adipose tissue development through epigenetic modifications in C57BL/6 mice. BBA Mol Cell Biol Lipids. 2018; 1863(12): 1488–97. doi:10.1016/j.bbalip.2018.09.008
14.    Stratakis N et al. Polyunsaturated fatty acid status at birth, childhood growth, and cardiometabolic risk: A pooled analysis of the Mefab and Rhea cohorts. Eur J Clin Nutr. 2019; 73(4): 566–76. doi:10.1038/s41430-018-0175-1
15.    Luxwolda M et al. A maternal erythrocyte DHA content of approximately 6 g% is the DHA status at which intrauterine DHA biomagnification turns into attenuation, and postnatal infant DHA equilibrium is reached. Eur J Nutr. 2011; 51(6): 665–75. doi:10.1007/s00394-011-0245-9
16.    Rucci E et al. Maternal fatty acid levels during pregnancy, childhood lung function and atopic diseases: The Generation R study. Clin Exp Allergy. 2016; 46(3): 461–71. doi:10.1111/cea.12613
17.    Zhang J et al. Duration and quality of sleep during pregnancy are associated with preterm birth and small for gestational age: A prospective study. Int J Gynaecol Obstet. 2021; 155(3): 505–11. doi:10.1002/ijgo.13584
18.    Monthé-Drèze C et al. Effect of omega-3 supplementation in pregnant women with obesity on newborn body composition, growth, and length of gestation: A randomized controlled pilot study. Nutrients. 2021; 13(2): 578. doi:10.3390/nu13020578
19.    Vidakovic A et al. Maternal plasma polyunsaturated fatty acid levels during pregnancy and childhood lipid and insulin levels. NutrMetab Cardiovasc Dis. 2017; 27(1): 78–85. doi:10.1016/j.numecd.2016.10.001
20.    Donahue S et al. Prenatal fatty acid status and child adiposity at age 3 years: Results from a U.S. pregnancy cohort. Am J Clin Nutr. 2011; 93(4): 780–8. doi:10.3945/ajcn.110.005801
21.    Koletzko B et al. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: Systematic review and practice recommendations from an Early Nutrition Academy workshop. Ann NutrMetab. 2014; 65(1): 49–80. doi:10.1159/000365767
22.    Pitale D. The effects of food habits on pregnancy outcome. Int J Reprod Contracept Obstet Gynecol. 2018; 7(2): 622. doi:10.18203/2320-1770.ijrcog20180183
23.    Zhao S. Melatonin alleviates lipopolysaccharide-induced abnormal pregnancy through MTNR1B regulation of m6A. Int J Mol Sci. 2024; 25(2): 733. doi:10.3390/ijms25020733
24.    Conway M et al. Maternal and child fatty acid desaturase genotype as determinants of cord blood long-chain PUFA (LCPUFA) concentrations in the Seychelles child development study. Br J Nutr. 2021; 126(11): 1687–97. doi:10.1017/s0007114521000441
25.    Simmonds L et al. Omega-3 fatty acid supplementation in pregnancy—baseline omega-3 status and early preterm birth: Exploratory analysis of a randomised controlled trial. BJOG. 2020; 127(8): 975–81. doi:10.1111/1471-0528.16168
26.    Elovitz M et al. Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci. 2011; 29(6): 663–71. doi:10.1016/j.ijdevneu.2011.02.011
27.    Hoge A et al. Imbalance between omega-6 and omega-3 polyunsaturated fatty acids in early pregnancy is predictive of postpartum depression in a Belgian cohort. Nutrients. 2019;11(4):876. doi:10.3390/nu11040876
28.    Penfield-Cyr A et al. Maternal BMI, mid-pregnancy fatty acid concentrations, and perinatal outcomes. Clin Ther. 2018; 40(10): 1659–66.e1. doi:10.1016/j.clinthera.2018.08.011
29.    Chalupska M et al. Intra-amniotic infection and sterile intra-amniotic inflammation in cervical insufficiency with prolapsed fetal membranes: Clinical implications. Fetal Diagn Ther. 2020; 48(1): 58–69. doi:10.1159/000512102

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available