Author(s):
Maria J Anggakusuma, Chiquita Prahasanti, Westy Agrawanty, Mohammed Ahmed Aljunaid, Michael G Wijaya, Huda Rashad Qaid
Email(s):
chiquita-p-s@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2026.00037
Address:
Maria J Anggakusuma1, Chiquita Prahasanti2*, Westy Agrawanty1, Mohammed Ahmed Aljunaid3,4, Michael G Wijaya1, Huda Rashad Qaid4
1Residence in Periodontic Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Department of Oral and Dental Medicine, Faculty of Medicine, Taiz University, Taiz, Yemen.
4Faculty of Oral and Dental Medicine, Al-Saeed University, Taiz, Yemen.
*Corresponding Author
Published In:
Volume - 19,
Issue - 1,
Year - 2026
ABSTRACT:
Background/aim: Bone graft materials are commonly used to promote successful periodontal tissue treatments. However, these materials have various drawbacks while being widely utilized. A recent study focuses on tooth grafts to address the flaw. This study compared osteocalcin expression in bone healing following incisor extraction socket grafting with tooth graft and xenograft hydroxyapatite. Materials and methods: The study conducted experiments on thirty-three adult male Cavia cobaya randomly divided into hydroxyapatite tooth graft, hydroxyapatite xenograft, and control group (no treatment). Bone tissue sections were stained with hematoxylin-eosin and diaminobenzidine to analyze osteocalcin expression through immunohistochemical evaluation. Results: The Kruskal-Wallis test was used to compare each group, with a significance level of p=0.05. The results revealed a significant difference in mean osteocalcin between groups (p < 0.05). Osteocalcin expression was higher in the tooth graft group and lowered in the control group. Conclusion: The findings indicate that tooth grafts hold great potential as a new material for bone grafting, given their osteoinductive and osteoconductive properties, which are comparable to those of xenografts.
Cite this article:
Maria J Anggakusuma, Chiquita Prahasanti, Westy Agrawanty, Mohammed Ahmed Aljunaid, Michael G Wijaya, Huda Rashad Qaid. Tooth Materials-hydroxyapatite Compound: A New Invention in Bone Grafting Material. Research Journal of Pharmacy and Technology. 2026;19(1):263-8. doi: 10.52711/0974-360X.2026.00037
Cite(Electronic):
Maria J Anggakusuma, Chiquita Prahasanti, Westy Agrawanty, Mohammed Ahmed Aljunaid, Michael G Wijaya, Huda Rashad Qaid. Tooth Materials-hydroxyapatite Compound: A New Invention in Bone Grafting Material. Research Journal of Pharmacy and Technology. 2026;19(1):263-8. doi: 10.52711/0974-360X.2026.00037 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2026-19-1-37
REFERENCES:
1. Prahasanti C, Subrata LH, Saskianti T, Suardita K, Ernawati DS. Combined Hydroxyapatite Scaffold and Stem Cell from Human Exfoliated Deciduous Teeth Modulating Alveolar Bone Regeneration via Regulating Receptor Activator of Nuclear Factor-Κb and Osteoprotegerin System. Iran J Med Sci. 2019; 44(5): 415-421. doi:10.30476/IJMS.2019.44962
2. Tsai HC, Li YC, Young TH, Chen MH. Novel microinjector for carrying bone substitutes for bone regeneration in periodontal diseases. Journal of the Formosan Medical Association. 2016; 115(1): 45-50. doi:10.1016/J.JFMA.2014.10.009
3. Gupta R, Pandit N, Malik R, Sood S. Clinical and radiological evaluation of an osseous xenograft for the treatment of infrabony defects. J Can Dent Assoc. 2007; 73(6): 513-513f.
4. Carranza FA, Newman MG, H.Tahei H, Klokkevold PR. Newman and Carranza’s Clinical Periodontology. 13th ed. Elsevier health sciences; 2019.
5. Wijaya MG, Prahasanti C, Laksono BD, Agrawanty W, Kusumawardhani B, Anggakusuma MJ. Viability Test of Hydroxyapatite Tooth Graft on Osteoblast cell culture. Res J Pharm Technol. 2024; 17(2): 855-859. doi:10.52711/0974-360X.2024.00132
6. Joshi CP, Dani NH, Khedkar SU. Alveolar ridge preservation using autogenous tooth graft versus beta-tricalcium phosphate alloplast: A randomized, controlled, prospective, clinical pilot study. J Indian Soc Periodontol. 2016; 20(4): 429-434. doi:10.4103/0972-124X.188335
7. Kim YK, Lee J, Um IW, Kim KW, Murata M, Akazawa T, Mitsugi M. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg. 2013; 39(3): 103-111. doi:10.5125/JKAOMS.2013.39.3.103
8. Perdana S, Prahasanti C, Bargowo L, Prasetyo S, Riawan W. The Analysis of MMP-13 Expression on Hydroxyapatite Tooth Graft Application Compared to Hydroxyapatite Xenograft. Res J Pharm Technol. 2023; 16(1): 261-265. doi:10.52711/0974-360X.2023.00048
9. Besim Ben-Nissan. Advances in Calcium Phosphate Biomaterials. Vol 2. (Ben-Nissan B, ed.). Springer Berlin Heidelberg; 2014. doi:10.1007/978-3-642-53980-0
10. Dumitrescu AL. Bone Grafts and Bone Graft Substitutes in Periodontal Therapy. In: Chemicals in Surgical Periodontal Therapy. Springer Berlin Heidelberg; 2011: 73-144. doi:10.1007/978-3-642-18225-9_2
11. Patti A, Gennari L, Merlotti D, Dotta F, Nuti R. Endocrine actions of osteocalcin. Int J Endocrinol. 2013; 2013: 1-10. doi:10.1155/2013/846480
12. Chaves MD, De Souza Nunes LS, De Oliveira RV, Holgado LA, Filho HN, Matsumoto MA, Ribeiro DA. Bovine hydroxyapatite (Bio-Oss(®)) induces osteocalcin, RANK-L and osteoprotegerin expression in sinus lift of rabbits. Journal of cranio-maxillo-facial surgery. 2012; 40(8): e315-20. doi:10.1016/J.JCMS.2012.01.014
13. Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016; 82: 42-49. doi:10.1016/J.BONE.2015.05.046
14. Kini U, Nandeesh BN. Physiology of Bone Formation, Remodeling, and Metabolism. In: Radionuclide and Hybrid Bone Imaging. Vol 9783642024009. Springer-Verlag Berlin Heidelberg. 2012: 29-57. doi:10.1007/978-3-642-02400-9_2
15. Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res. 2011; 343(2): 289-302. doi:10.1007/S00441-010-1086-1
16. Hoang QQ, Sicheri F, Howard AJ, Yang DSC. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature. 2003; 425(6961): 977-980. doi:10.1038/NATURE02079
17. JT K, P A, N L, L T, S KP, M S, T S, E P, T S. Healing of extraction sockets in collagenase-2 (matrix metalloproteinase-8)-deficient mice. Eur J Oral Sci. 2009; 117(3): 248-254. doi:10.1111/J.1600-0722.2009.00620.X
18. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL. Regeneration of periodontal tissue: bone replacement grafts. Dent Clin North Am. 2010; 54(1): 55-71. doi:10.1016/J.CDEN.2009.09.003
19. Politis C, Schoenaers J, Jacobs R, Agbaje JO. Wound Healing Problems in the Mouth. Front Physiol. 2016; 7: 507-520. doi:10.3389/FPHYS.2016.00507
20. Cohen N, Cohen-Lévy J. Healing processes following tooth extraction in orthodontic cases. Journal of Dentofacial Anomalies and Orthodontics. 2014; 17(3): 304-325. doi:10.1051/ODFEN/2014006
21. Araújo MG, Liljenberg B, Lindhe J. Dynamics of Bio-Oss Collagen incorporation in fresh extraction wounds: an experimental study in the dog. Clin Oral Implants Res. 2010; 21(1): 55-64. doi:10.1111/J.1600-0501.2009.01854.X
22. Sotto-Maior BS, Senna PM, Aarestrup BJ V., Ribeiro RA, De Souza Picorelli Assis NM, Del Bel Cury AA. Effect of bovine hydroxyapatite on early stages of bone formation. Revista Odonto Ciência. 2011; 26(3): 198-202. doi:10.1590/S1980-65232011000300001
23. Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, Clark SG, Wheeler MB, Jamison RD, Wagoner Johnson AJ. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007; 28(1): 45-54. doi:10.1016/J.BIOMATERIALS.2006.08.021
24. Sun H, Ye F, Wang J, Shi Y, Tu Z, Bao J, Qin M, Bu H, Li Y. The upregulation of osteoblast marker genes in mesenchymal stem cells prove the osteoinductivity of hydroxyapatite/tricalcium phosphate biomaterial. Transplant Proc. 2008; 40(8): 2645-2648. doi:10.1016/J.TRANSPROCEED.2008.07.096
25. Chan RC, Marino V, Bartold PM. The effect of Emdogain and platelet-derived growth factor on the osteoinductive potential of hydroxyapatite tricalcium phosphate. Clin Oral Investig. 2012; 16(4): 1217-1227. doi:10.1007/S00784-011-0629-5
26. Mahardawi B, Rochanavibhata S, Jiaranuchart S, Arunjaroensuk S, Mattheos N, Pimkhaokham A. Autogenous tooth bone graft material prepared chairside and its clinical applications: a systematic review. Int J Oral Maxillofac Surg. 2023; 52(1): 132-141. doi:10.1016/J.IJOM.2022.04.018
27. Jeong HR, Hwang JH, Lee JK. Effectiveness of autogenous tooth bone used as a graft material for regeneration of bone in miniature pig. J Korean Assoc Oral Maxillofac Surg. 2011; 37(5): 375-379. doi:10.5125/JKAOMS.2011.37.5.375
28. Pan H, Darvell BW. Effect of carbonate on hydroxyapatite Solubility. Cryst Growth Des. 2010; 10(2): 845-850. doi:10.1021/CG901199H
29. Murata M, Akazawa T, Mitsugi M, Kabir MA, Um IW, Minamida Y, Kim KW, Kim YK, Sun Y, Qin C, Murata M, Akazawa T, Mitsugi M, Kabir MA, Um IW, Minamida Y, Kim KW, Kim YK, Sun Y, Qin C. Autograft of Dentin Materials for Bone Regeneration. In: Advances in Biomaterials Science and Biomedical Applications. IntechOpen. 2013. doi:10.5772/53665
30. Ueno H, Fujimi TJ, Okada I, Aizawa M. Development of biocompatible apatite sheets with various Ca/P ratios and carbonate ion contents for mouse osteoblastic cell culture and their evaluations. Journal of the Australian Ceramic Society. 2010; 46(2): 14-18. Accessed December 6, 2023. https://meiji.elsevierpure.com/en/publications/development-of-biocompatible-apatite-sheets-with-various-cap-rati
31. Ramesh S, Tan CY, Hamdi M, Sopyan I, Teng WD, Ramesh S, Tan CY, Hamdi M, Sopyan I, Teng WD. The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics. In: SPIE. Vol 6423. SPIE; 2007: 64233A. doi:10.1117/12.779890
32. Neel EAA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V. Demineralization–remineralization dynamics in teeth and bone. Int J Nanomedicine. 2016; 11: 4743-4763. doi:10.2147/IJN.S107624
33. Suzuki T, Hukkanen M, Ohashi R, Yokogawa Y, Nishizawa K, Nagata F, Buttery L, Polak J. Growth and adhesion of osteoblast-like cells derived from neonatal rat calvaria on calcium phosphate ceramics. J Biosci Bioeng. 2000; 89(1): 18-26. doi:10.1016/S1389-1723(00)88045-7