ABSTRACT:
The current study presents a simple, quick, accurate, precise, and affordable approach for the determination of Ivermectin in tablet dosage forms. The developed method based on UV Spectrophotometric analysis at Zero-order without any separation step or any sophisticated previous step. The described approach uses Sodium Lauryl Sulfate (SLS) Solution (0.5%) as a solvent. Ivermectin (IVR) exhibited maximal absorbance at 245 nm, with linearity throughout concentration ranges of 2.5-25 µg mL-1. The mean percentage recovery was 99.5% and the precision was within the relative standard deviation of less than 2%. The approach was effectively utilized to determine the medication in tablet preparation. The results of the selectivity test demonstrated that the tablet excipients did not interfere with the separation process, confirming that this approach is not only quick, accurate, and economical, but also easily adaptable to quality control labs and the pharmaceutical industry. The approach was validated in accordance with the recommendations of the International Council for Harmonization.
Cite this article:
Shoeb Alahmad, Mohammad Firas Mannaa. New UV Spectrophotometric Method by Using Surfactant as Solubilizing Agent for Determination of Anti-Covid-19 (Ivermectin) in Dosage Form. Research Journal of Pharmacy and Technology. 2026;19(1):278-2. doi: 10.52711/0974-360X.2026.00039
Cite(Electronic):
Shoeb Alahmad, Mohammad Firas Mannaa. New UV Spectrophotometric Method by Using Surfactant as Solubilizing Agent for Determination of Anti-Covid-19 (Ivermectin) in Dosage Form. Research Journal of Pharmacy and Technology. 2026;19(1):278-2. doi: 10.52711/0974-360X.2026.00039 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2026-19-1-39
REFERENCES:
1. Bryant, A.; et al. Ivermectin for Prevention and Treatment of COVID-19 Infection: A Systematic Review, Meta-analysis, and Trial Sequential Analysis to Inform Clinical Guidelines. Am J Ther. 2021; 28: 434–46. doi: 10.1097/MJT.0000000000001402.
2. allavi Rai, Deblina Roy. Death and Scarcity of Life Saving PPEs: Where is the Life of Heroes?. Asian J. Nursing Education and Research. 2021; 11(1): 157-160. doi: 10.5958/2349-2996.2021.00040.9
3. Pumila Singh, Divya Sharma, Varsha Singh, Sheila Kumari, Arjun Singh, Hema Jain. Management of Non-hospitalized patients with Acute SARS-CoV-2 (COVID-19) viral infection in among human adult population. Asian Journal of Management. 2023; 14(4): 227-2. doi: 10.52711/2321-5763.2023.00038.
4. Mckellar, Q. A.; Benchaoui, H. A. Avermectins and milbemycins. Invited review. Journal of Veterinary Pharmacology and Therapeutics. 1996: 19: 331–351.
5. Shoop, W. L.; Mrozik, H.; Fisher, M. H. Structure and activity of avermectins and milbemycins in animal health, 1995; 59(2): 139-56. doi: 10.1016/0304-4017(94)00743-v
6. Zaidi, A. K.; Dehgani-Mobaraki, P. The mechanisms of action of ivermectin against SARS-CoV-2—an extensive review. Journal of Antibiotics. 2022; 75 (2): 60–71. doi: 10.1038/s41429-021-00491-6.
7. Delandre, O. et al. Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals. 2022; 15(4). doi: 10.3390/ph15040445.
8. Varghese, F. S. et al., Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses, Antiviral Res. 2016; 126: 117–124. doi: 10.1016/ j.antiviral.2015.12.012.
9. Heidary, F; Gharebaghi, R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen,” Journal of Antibiotics. 2020; 73(9): 593–602. doi: 10.1038/s41429-020-0336-z.
10. Biber, A. et al. The effect of ivermectin on the viral load and culture viability in early treatment of nonhospitalized patients with mild COVID-19 – a double-blind, randomized placebo-controlled trial. International Journal of Infectious Diseases. 2022; 122: 733–740. doi: 10.1016/j.ijid.2022.07.003.
11. Ortiz, A. J; Cortez, A. Azzouz; Verdú, J. R. Isolation and determination of ivermectin in post-mortem and in vivo tissues of dung beetles using a continuous solid phase extraction method followed by LC-ESI+-MS/MS, PLoS One. 2022; 12(2). doi: 10.1371/journal.pone.0172202.
12. Ali, M; Alam, S; Ahmad, S; Dinda, A. K; Ahmad, F. J. Determination of ivermectin stability by high-performance thin-layer chromatography, 2010. [Online]. Available: http://www.ijddr.in
13. Croubels, S; De Baere, S; Cherlet, M; De Backer, P. Determination of ivermectin B1a in animal plasma by liquid chromatography combined with electrospray ionization mass spectrometry. Journal of Mass Spectrometry. 2002; 37(8): 840–847. doi: 10.1002/jms.343.
14. Muralikrishna, M; Surekha, M. L; Padma, R; Ajay, C; Reddy, A. M. A novel validated RP-HPLC method for simultaneous estimation of Ivercitin and Albendazole in bulk and tablet combined dosage forms. World Journal of Pharmaceutical Research. 2019; 8: 958. doi: 10.20959/wjpr201913-16039.
15. Thakur, S; Rab, M. A; Kadimcharla, K. Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Ivermectin and Albendazole in Bulk and Tablet Dosage Form. IJPPR. Human. 2023; 26(2): 91-107.
16. Wimalasinghe, R. M; Zhao, D; Wang, L; Rustum, A. Development and Validation of a Stability-Indicating Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) Method for Identification, Assay, and Estimation of Related Substances of Ivermectin Drug Substance. J AOAC Int. 2021; 104 (6): 1505–1513. doi: 10.1093/jaoacint/qsab088.
17. B. Bhavya, P. Nagaraju, V. Mounika, G. Indira Priyadarshini. Stability Indicating RP-HPLC Method Development and Validation for Simultaneous Estimation of Albendazole and Ivermectin in Pharmaceutical Dosage form. Asian J. Pharm. Ana. 2017; 7(1): 6-14. doi: 10.5958/2231-5675.2017.00002.3
18. Rajen, L. K; Jignasa, M. Simultaneous equation method for the estimation of Ivermectin and Clorsulon in their combined pharmaceutical dosage form by UV-Visible spectrophotometry. 2014.
19. Taşpinar, N. Comparation with Spectrophotometric and Liquid Chromatographic Methods of Pharmaceutical Forms of Ivermectin. Medical Records. 2023; 5(1): 126–31. doi: 10.37990/medr.1183807.
20. Reddy, A; Sekhar, C. UV spectrophotometric method for simultaneous determination of Levocetirizine and Ivermectin in bulk and combined dosage form. IJPIR. 2012; 2(3): 639- 646.
21. Ivermectin. European Pharmacopoeia 10th. 2021
22. Ivermectin Tablets. United States Pharmacopeia. 2021
23. Audumbar Digambar Mali, Ritesh Bathe, Ashpak Tamboli. Zero Order and Area under Curve Spectrophotometric Methods for Determination of Domperidone in Pharmaceutical Formulation. Asian J. Pharm. Tech. 2015; 5(3) 182-187. doi: 10.5958/2231-5713.2015.00026.4
24. ICH Q2(R1). 2005 [Available from: http://www.ich.org/page/ quality guidelines].
25. Samsuddin Ansari, Ankit Kumar, Manju Prajapati, Janki Prasad Rai. A Review on Pharmaceutical Process Validation. Asian Journal of Pharmacy and Technology. 2024; 14(3): 251-6. doi: 10.52711/2231-5713.2024.00041
26. Amruta S. Kadam, Nayana V. Pimpodkar, Puja S.Gaikwad, Sushila D. Chavan.. Bioanalytical Method Validation. Asian J. Pharm. Ana. 2015; 5(4): 219-225.
27. Soumesh Kumar Tripathy. Pharmaceutical Validation: A Quality Maintaining Tool for Pharmaceutical Industry. Asian J. Pharm. Res. 2020; 10(4): 307-311. doi: 10.5958/2231-5691.2020.00052.0
28. Saroj Kumar Raul, Gopal Krishna Padhy, Anjan Kumar Mahapatra, Soudamini Alekha Charan. An Overview of Concept of Pharmaceutical Validation. Research J. Pharm. and Tech. 2014; 7(9): 1081-1090.
29. Suman Pattanayak, A. Alekhya Prasanna, Ch. Kiranmayi, K. Padmalatha. Analytical UV Spectroscopic Method Development and Validation for the Estimation of Mycophenolate Mofetil. Asian J. Pharm. Ana. 2015; 5(4): 209-213. doi: 10.5958/2231-5675.2015.00033.2
30. Sushil D. Patil, Sayali K. Chaure, Maswood Ahmed Hafizur Rahman, Prajkta U. Varpe, Sanjay Kshirsagar.. Development and Validation of Simple UV- Spectrophotometric Method for the Determination of Empagliflozin. Asian J. Pharm. Ana. 2017; 7(1): 18-22. doi: 10.5958/2231-5675.2017.00004.7