Author(s): Safaa Abid, Badr Satrani, Farah Aabouch, Mohamed Ouajdi, Ayoub Souileh, Achraf Mabrouk, Badr Eddine Kartah

Email(s): safaa-abid@hotmail.fr

DOI: 10.52711/0974-360X.2026.00004   

Address: Safaa Abid1*, Badr Satrani2, Farah Aabouch3, Mohamed Ouajdi2, Ayoub Souileh2, Achraf Mabrouk2, Badr Eddine Kartah1
1Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences. Mohammed V University in Rabat, 4 Avenue Ibn Battouta B.P. 1014 RP. Morocco.
2Center for Innovation, Research and Training, Water and Forests National Agency, (CIRF-ANEF), BP 763, 10080, Rabat, Morocco.
3Plant Animal Production and Agro-industry Laboratory, Biology Department, Ibn To Fail University.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Intraspecific hybridization in the Eucalyptus genus offers a strategic pathway for enhancing both essential oil (EO) productivity and bioactivity through chemotype diversification. This study provides a comprehensive comparative analysis of EO yield, chemical composition, and antimicrobial efficacy in Eucalyptus camaldulensis, Eucalyptus grandis, and their interspecific hybrid, clone 2414. Hydrodistillation of leaf material yielded a significantly higher EO output in the hybrid (6.93 ± 0.07% w/w, dry basis) compared to E. camaldulensis (2.47 ± 0.08%) and E. grandis (2.38 ± 0.06%) (p < 0.05). Gas chromatography–mass spectrometry (GC–MS) profiling revealed 46 constituents accounting for over 98% of the total volatile fraction. The hybrid EO exhibited a unique chemotype enriched simultaneously in 1,8-cineole (47,6%) and a-pinene (40,4%), while parental oils displayed a monoterpene dominance with either compound prevailing. Multivariate analyses, including ANOVA and principal component analysis (PCA), confirmed clear chemical differentiation among the taxa and highlighted the hybrid's distinct phytochemical identity. Antimicrobial activity, assessed via broth microdilution assays, demonstrated that the hybrid EO exerted potent inhibitory effects against Escherichia coli, Micrococcus luteus, Staphylococcus aureus, and Bacillus subtilis at 1:100 (v/v), and exhibited enhanced antifungal activity against Coniophora puteana at 1:1000 (v/v), surpassing the efficacy of one or both parental oils. These results suggest a synergistic interaction between major terpenoids (1,8-cineole, a-pinene) and minor compounds such as p-cymene, contributing to the superior bioactivity of the hybrid EO. This study underscores the potential of targeted hybridization in Eucalyptus breeding programs to generate high-yielding chemotypes with broad-spectrum antimicrobial properties. Further investigations on cytotoxicity, seasonal chemical variability, and large-scale feasibility are warranted to advance toward pharmaceutical or industrial applications.


Cite this article:
Safaa Abid, Badr Satrani, Farah Aabouch, Mohamed Ouajdi, Ayoub Souileh, Achraf Mabrouk, Badr Eddine Kartah. Phytochemical Profile, Yield, and Antimicrobial Activity of Essential Oils from Eucalyptus camaldulensis, E. grandis, and their Hybrid Clone 2414. Research Journal of Pharmacy and Technology. 2026;19(1):27-2. doi: 10.52711/0974-360X.2026.00004

Cite(Electronic):
Safaa Abid, Badr Satrani, Farah Aabouch, Mohamed Ouajdi, Ayoub Souileh, Achraf Mabrouk, Badr Eddine Kartah. Phytochemical Profile, Yield, and Antimicrobial Activity of Essential Oils from Eucalyptus camaldulensis, E. grandis, and their Hybrid Clone 2414. Research Journal of Pharmacy and Technology. 2026;19(1):27-2. doi: 10.52711/0974-360X.2026.00004   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2026-19-1-4


6. REFERENCES:
1.    AL-Shybany SS. Effect of eucalyptus extracts on the vegetative growth and yield of Hordeum vulgare plant. Res J Pharm Technol. 2018; 11(5): 1974. 
2.    Belaid S, Gonzalez‐Coloma A, Andres MF, Elfalleh W, Idoudi S, Romdhane M, et al. Exploring Chemical Profiles, Antifeedant, Nematicidal, and Phytotoxic Potentials of Seven Essential Oils From Eucalyptus Species. Chem Biodivers. 2025; Jun; 22(6): e202402960. 
3.    Boulmane M, Oubrahim H, Halim M, Bakker MR, Augusto L. The potential of Eucalyptus plantations to restore degraded soils in semi-arid Morocco (NW Africa). Ann For Sci. 2017 Sep; 74(3): 57. 
4.    Hakim Haj Moussa, Benamara  Sara, Hadia Benhalima, Fouzia Benaliouche, Ibtissem Sbartai, Hana Sbartai. Chemical characterization of Eucalyptus (Eucalyptus globulus) leaf essential oiland evaluation of its antifungal, antibacterial and antioxidant activities. Cell Mol Biol. 2025 Jan 12; 70(12): 1–9. 
5.    Yanico Hadi Prayogo YHP, Anggini AW, Carolina A, Togu Manurung EG, Sari RK, Purwoko A, et al. In vitro and In silico Antibacterial Potency of Eucalyptus Leaf Oil from Hybrid Clones of E. grandis with E. urophylla and E. pellita. Appl Sci Eng Prog [Internet]. 2025 Jan 10 [cited 2025 Aug 1]; Available from: https://ojs.kmutnb.ac.th/index.php/ijst/article/view/7671
6.    Mohite S, Shah R, Patel N. Antimicrobial activity of leaves extracts of Passiflora foetida. Asian J Res Pharm Sci. 2018; 8(1): 17. 
7.    Maneesh K, Vijayabhaskar K, Firdouse H, Srinivasa Rao P, Prajwitha M, Swetha S. Evaluation of Antimicrobial of P. vesicularis, Streptococcus faecalis, Aeromonas hydrophilia, Salmonela typhae, Stphylococcus cohni, Serratia ficaria and E. coli. of crude and n-butanol fraction fruit latex of Carica papaya L. (Caricaceae). Asian J Pharm Res. 2021 May 11; 92–4. 
8.    El Orche A, El Mrabet A, Said AAH, Mousannif S, Elhamdaoui O, Ansari SA, et al. Integration of FTIR Spectroscopy, Volatile Compound Profiling, and Chemometric Techniques for Advanced Geographical and Varietal Analysis of Moroccan Eucalyptus Essential Oils. Sensors. 2024 Nov 17; 24(22): 7337. 
9.    Hishmath M, A P Z, Francis P S, K V, Josvi Veigas G, Ravikumar R. Prescribing Pattern of Antimicrobials for Respiratory Tract Infections among Paediatric population in a Multi- Speciality Teaching Hospital. Res J Pharm Technol. 2023 Dec 29; 5972–7. 
10.    Isyaka MS, Sudi MJ, Anyam VJ, Labaran HS, Muhammad AA. Antimicrobial assay of essential oil from Eucalyptus globulus LEAF. J Chem Soc Niger [Internet]. 2024 Dec 23 [cited 2025 Aug 1]; 49(6). Available from: https://journals.chemsociety.org.ng/index.php/jcsn/article/view/1025
11.    Dhiman D, Vishvamitera S, Baghla S, Singh S, Kumar D, Kumar A, et al. Synergistic effect of mulch and nitrogen management on growth and essential oil yield of Salvia sclarea L. Sci Rep. 2024 Dec 30; 14(1): 32075. 
12.    El Hachlafi N, Kandsi F, Elbouzidi A, Lafdil FZ, Nouioura G, Abdallah EM, et al. Extraction of Bioactive Compound-Rich Essential Oil from Cistus ladanifer L. by Microwave-Assisted Hydrodistillation: GC-MS Characterization, In vitro Pharmacological Activities, and Molecular Docking. Separations. 2024 Jun 27; 11(7): 199. 
13.    Aabouch F, Annemer S, Satrani B, Ettaleb I, Kara M, Ghanmi M, et al. Assessing the Optimal Antibacterial Action of Lavandula stoechas L., Thymus zygis L., and Eucalyptus camaldulensis Dehnh Essential Oils. Life. 2024 Nov 5; 14(11): 1424. 
14.    Sawarkar H, C. Kale S, D. Bawankar R, R. Biyani K. Exploring the Biofilm Inhibiting potential of Bunium persicum Essential Oil: A Promising Strategy for Combating Microbial Biofilm. Res J Pharm Technol. 2024; 2592–6. 
15.    Ait Benlabchir A, Fikri-Benbrahim K, Moutawalli A, Alanazi MM, Halmoune A, Benkhouili FZ, et al. GC–MS Characterization and Bioactivity Study of Eucalyptus globulus Labill. (Myrtaceae) Essential Oils and Their Fractions: Antibacterial and Antioxidant Properties and Molecular Docking Modeling. Pharmaceuticals. 2024; 17(11): 1552. 
16.    Hardou-Belhocine K, Brahmi F, Grenier D, Mouhoubi K, Madani K, Boulekbache-Makhlouf L. Eucalyptus globulus Labill. Essential Oil Effect on the Attachment of Oral Bacteria to Hydroxyapatite and Biofilm Formation. Curr Bioact Compd. 2025 Feb; 21(2): e020424228522. 
17.    Omar Bakr R, Saad Zaghloul S, Ibrahim Amer R, Elaty Mostafa DA, El Bishbishy MH. Formulation, Characterization and Antimicrobial efficacy of Aegle marmelos Essential oil nanogel. Res J Pharm Technol. 2021 Jul 19; 3662–8. 
18.    Sapkota B, Amatya M, Neupane S. Phytochemical Screening and Evaluation of Antimicrobial Activity of Desmostachya bipinnata Roots. Asian J Pharm Res. 2024; 206–12. 
19.    Kulkarni V, Jain N, Shinde R, Kamble S. Formulation and Evaluation of Antimicrobial Gels using Essential Oils. Asian J Pharm Res. 2024; 129–32. 
20.    Benomari FZ, Sarazin M, Chaib D, Pichette A, Boumghar H, Boumghar Y, et al. Chemical Variability and Chemotype Concept of Essential Oils from Algerian Wild Plants. Molecules. 2023; 28(11): 4439. 
21.    Barboucha G, Rahim N, Boulebd H, Bramki A, Andolfi A, Salvatore MM, et al. Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA. Plants. 2024; 13(22): 3229. 
22.    Purohit MC, Kandwal A, Purohit R, Semwal AR, Shama P, Khajuria AK. Antimicrobial Activity of Synthesized Zinc Oxide Nanoparticles using Ajuga bracteosa Leaf Extract. Asian J Pharm Anal. 2021 Nov 27; 275–80. 
23.    Ben Akacha B, Michalak M, Generalić Mekinić I, Kačániová M, Chaari M, Brini F, et al. Mixture design of α‐pinene, α‐terpineol, and 1,8‐cineole: A multiobjective response followed by chemometric approaches to optimize the antibacterial effect against various bacteria and antioxidant activity. Food Sci Nutr. 2024; 12(1): 574–89. 
24.    Joshi RK. Chemical constituents of Artemisia nilagirica (Clarke) from Western Himalaya of Uttrakhand, India. Asian J Pharm Anal. 2020; 10(4): 182–4. 
25.    Mostafa DA, Bayoumi FS, Taher HM, Abdelmonem BH, Eissa TF. Antimicrobial potential of mentha spp. essential oils as raw and loaded solid lipid nanoparticles against dental caries. Res J Pharm Technol. 2020; 13(9): 4415. 
26.    Knezevic P, Aleksic V, Simin N, Svircev E, Petrovic A, Mimica-Dukic N. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J Ethnopharmacol. 2016 Feb; 178: 125–36. 
27.    Yip SC, Ho LY, Wu TY, Sit NW. Chemical composition and bioactivities of Eucalyptus essential oils from selected pure and hybrid species: A review. Ind Crops Prod. 2024 Dec; 222: 120118. 
28.    Batista DG, Sganzerla WG, Da Silva LR, Vieira YGS, Almeida AR, Dominguini D, et al. Antimicrobial and Cytotoxic Potential of Eucalyptus Essential Oil-Based Nanoemulsions for Mouthwashes Application. Antibiotics. 2024 Oct 8; 13(10):942. 
29.    Ranjan Sahoo M, Srinivasan Umashankar M, Raghava Varier R. Development and Evaluation of Essential Oil-based Lozenges using Menthol and Eucalyptus and in vitro Evaluation of their Antimicrobial activity in S.aureus and E.coli. Res J Pharm Technol. 2022; 5283–8. 
30.    Koursaoui L, Satrani B, Ghanmi M, Cherrad S, Jaouadi I, Hajib S, et al. Eucalyptus sideroxylon A. Cunn.: A Natural Eucalyptol (1,8-cineole) source in Morocco. Res J Pharm Technol. 2021 14; 4583–90. 
31.    Zhan C. Genome Editing and Functional Verification of Eucalyptus Disease Resistance Genes. Tree Genet Mol Breed [Internet]. 2024 [cited 2025 Sep 10]; Available from: http://genbreedpublisher.com/index.php/tgmb/article/view/4077


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available