Author(s): Bokov D.O., Bobkova N.V., Sergunova E.V., Chevidaev V.V., Kakhramanova S.D., Zhilkina V.Yu., Mustafakulov B. F., Klyukina E.S., Selifanov A.V., Bondar A.A., Evgrafov A.A., Yakubovich L.M., Kuleshova E.S., Gildeeva G.N., Smolyarchuk E.A., Luferov A.N.1, Samylina I.A.1, Krasnyuk I.I. (junior), Bessonov V.V.

Email(s): fmmsu@mail.ru

DOI: 10.52711/0974-360X.2026.00005   

Address: Bokov D.O.1,2*, Bobkova N.V.1, Sergunova E.V.1, Chevidaev V.V.1, Kakhramanova S.D.1, Zhilkina V.Yu.3, Mustafakulov B. F.1, Klyukina E.S.1, Selifanov A.V.2, Bondar A.A.1, Evgrafov A.A.1, Yakubovich L.M.1, Kuleshova E.S.1, Gildeeva G.N.1, Smolyarchuk E.A.1, Luferov A.N.1, Samylina I.A.1, Krasnyuk I.I.1 (junior), Bessonov V.V.2,3
1Sechenov First Moscow State Medical University (Sechenov University), 8, Trubetskaya St., bldg. 2, 119991, Russian Federation.
2Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14, Ustyinsky pr., Moscow, 109240, Russian Federation.
3Рeoples’ Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Baikal skullcap (Scutellaria baicalensis Georgi) is a medicinal plant with many pharmacological properties. Modern phytochemical analysis has shown that S. baicalensis roots contains many groups of biologically active compounds (BAC), of which flavonoids are its main components, and baicalein is the most important of them. These BAC are the basis for the pharmacological action of S. baicalensis. Pharmacological studies have shown that S. baicalensis has a wide range of pharmacological activities, including antiviral effects, as well as anti-inflammatory, antibacterial, anti-cancer, liver protection, etc. S. baicalensis BAC may have a potential therapeutic effect against COVID-19, due to baicalin and baicalein content. The exact therapeutic effects have yet to be determined in clinical trials; this is a topic for future research. Thus, the extract of the roots of S. baicalensis, baicalein may become a promising therapeutic drug for the treatment of SARS-CoV-2.


Cite this article:
Bokov D.O., Bobkova N.V., Sergunova E.V., Chevidaev V.V., Kakhramanova S.D., Zhilkina V.Yu., Mustafakulov B. F., Klyukina E.S., Selifanov A.V., Bondar A.A., Evgrafov A.A., Yakubovich L.M., Kuleshova E.S., Gildeeva G.N., Smolyarchuk E.A., Luferov A.N.1, Samylina I.A.1, Krasnyuk I.I. (junior), Bessonov V.V.. Baikal skullcap (Scutellaria baicalensis Georgi) – promising source of potential therapeutic agents for COVID 19 (SARS-CoV-2). Research Journal of Pharmacy and Technology. 2026;19(1):33-7. doi: 10.52711/0974-360X.2026.00005

Cite(Electronic):
Bokov D.O., Bobkova N.V., Sergunova E.V., Chevidaev V.V., Kakhramanova S.D., Zhilkina V.Yu., Mustafakulov B. F., Klyukina E.S., Selifanov A.V., Bondar A.A., Evgrafov A.A., Yakubovich L.M., Kuleshova E.S., Gildeeva G.N., Smolyarchuk E.A., Luferov A.N.1, Samylina I.A.1, Krasnyuk I.I. (junior), Bessonov V.V.. Baikal skullcap (Scutellaria baicalensis Georgi) – promising source of potential therapeutic agents for COVID 19 (SARS-CoV-2). Research Journal of Pharmacy and Technology. 2026;19(1):33-7. doi: 10.52711/0974-360X.2026.00005   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2026-19-1-5


REFERENCES:
1.    WHO monographs on selected medicinal plants. “Radix Scutellariae”; Vol. 3. Geneva: World Health Organization. 2007; 313-327.
2.    Manyakhin AYu, Zorikova SP, Zorikova OG. Dynamics of flavonoids accumulation and distribution in the baikal scullcap (Scutellaria baicalensis Georgi) organs. Bulletin of KrasSMU. 2009; 11: 79-83
3.    European Pharmacopoeia 10th Edition (EP)
4.    Wang ZL, Wang S, Kuang Y, Hu ZM, Qiao X, Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol. 2018; 56(1): p. 465 465-484.
5.    Chinese Pharmacopoeia. 2015 edition. Chinese Pharmacopoeia Commission. Chinese pharmacopoeia. China Medical Science Press: Beijing, China
6.    Olennikov DN, Chirikova NK, Tanhaeva LM. Phenolic compounds of Scutellaria baicalensis (Scutellaria baicalensis Georgi). Khimija Rastitel’nogo Syr’ja. 2009; (4): 89-98.
7.    Ikezoe T, Chen SS, Heber D, Taguchi H, Koeffler HP. Baicalin is a major component of PC-SPES which inhibits the proliferation of human cancer cells via apoptosis and cell cycle arrest. T. Ikezoe. Prostate. 2001; 49: 285-292. 
8.    Huang WH, Chien PY, Yang CH, Lee AR. Novel synthesis of flavonoids of Scutellaria baicalensis G EORGI. Chemical and Pharmaceutical Bulletin. 2003; 51(3): 339-340.
9.    Ciesielska E, Gwardys A, Metodiewa D. Anticancer, antiradical and antioxidative actions of novel Antoksyd S and its major components, baicalin and baicalein. Anticancer Res. 2002; 22(5): 2885-2891.
10.    Ciesielska E, Wolszczak M, Gulanowski B, Szulawska A, Kochman A, Metodiewa D. In vitro antileukemic, antioxidant and prooxidant activities of Antoksyd S (C/E/XXI): a comparison with baicalin and baicalein. In Vivo. 2004; 18(4): 497-503.
11.    Lin XC, Liu XG, Chen XW, Chen WZ, Liang NC. Inhibitory effect and its kinetic analysis of baicalein on recombinant human protein kinase CK2 holoenzyme. Ai Zheng. 2004; 23(8): 874-878. 
12.    Chen YJ et al. Baicalein triggers mitochondria-mediated apoptosis and enhances the antileukemic effect of vincristine in childhood acute lymphoblastic leukemia CCRF-CEM Cells. Evid Based Complement Alternat Med. 2013; 2013: 124747. 
13.    Bie B et al. Baicalein, a natural anti-cancer compound, alters microRNA expression profiles in Bel-7402 Human Hepatocellular Carcinoma Cells. Cell Physiol Biochem. 2017; 41(4):  1519-1531.
14.    Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain Sci. 2018; 8: 104. https://doi.org/10.3390/brainsci8060104
15.    Qasim MT, Al-Mayali HK. Investigate the relation between Baicalin effect and Gene expression of LH, FSH, Testosterone in male rats treated with Gemcitabine drug. Research Journal of Pharmacy and Technology. 2019; 12(9): 4135-4141.
16.    Shi, H. et al. Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice. Scientific Reports, 2016; 6:  35851. 
17.    Li C, Lin G, Zuo Z. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharmaceutics & Drug Disposition. 2011; 32(8): 427-445. 
18.    Kowalczyk E, Krzesiński P, Kura M, Niedworok J, Kowalski J, Błaszczyk J. Pharmacological effects of flavonoids from Scutellaria baicalensis. Przeglad Lekarski. 2006; 63(2): 95-96.
19.    Yoon SB et al. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. Journal of Ethnopharmacology. 2009; 125(2): 286-290.
20.    Zhang XW et al. Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Shen. Pharm Biol. 2011; 49:  256-261. 
21.    Gao Z, Huang K,  Xu H. Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacological Research. 2001; 43(2): 173-178.
22.    Shao ZH et al. Extract from Scutellaria baicalensis Georgi attenuates oxidant stress in cardiomyocytes. Journal of Molecular and Cellular Cardiology. 1999; 31(10): 1885-1895.
23.    Gao Z, Huang K, Yang X, Xu H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochimica et Biophysica Acta (BBA)-General Subjects. 1999; 1472(3): 643-650.
24.    Gasiorowski K, Lamer-Zarawska E, Leszek J, Parvathaneni K, Yendluri BB, Blach-Olszewska Z, Aliev G. Flavones from root of Scutellaria baicalensis Georgi: drugs of the future in neurodegeneration?  CNS Neurol Disord Drug Targets. 2011; 10;  184-191. 
25.    Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev. 2009; 35:  57-68. 
26.    Kumagai T, Muller CI, Desmond JC, Imai Y, Heber D, Koeffler HP. Scutellaria baicalensis, a herbal medicine: anti-proliferative and apoptotic activity against acute lymphocytic leukemia, lymphoma and myeloma cell lines. Leuk. Res. 2007; 31: 523-530. 
27.    Choi J et al. Flavones from Scutellaria baicalensis Georgi attenuate apoptosis and protein oxidation in neuronal cell lines. Biochimica et Biophysica Acta (BBA)-General Subjects. 2002; 1571(3): 201-210.
28.    Himeji M et al. Difference of growth-inhibitory effect of Scutellaria baicalensis-producing flavonoid wogonin among human cancer cells and normal diploid cell. Cancer Lett. 2007; 245:  269-274. 
29.    Huang ST et al. Wogonin, an active compound in Scutellaria baicalensis, induces apoptosis and reduces telomerase activity in the HL-60 leukemia cells. Phytomedicine. 2010; 17:  47-54. 
30.    Hui KM, Huen MS, Wang HY, Zheng H, Sigel E, Baur R, Xue H. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochemical Pharmacology. 2002; 64(9): 1415-1424.
31.    Park HG et al. Anticonvulsant effect of wogonin isolated from Scutellaria baicalensis. European Journal of Pharmacology. 2007; 574(2-3): 112-119.
32.    Huang RL et al. Anti-hepatitis B virus effects of wogonin isolated from Scutellaria baicalensis. Planta Medica. 2000; 66(08): 694-698.
33.    Ji S et al. Anti -H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. J Ethnopharmacol. 2015; 176: 475-84.
34.    Oo A et al. Baicalein a nd baicalin as Zika virus inhibitors. Arch Virol. 2019; 164(2): 585 -593.
35.    Zandi K et al. Extract of Scutellaria baicalensis inhibits dengue virus replication. BMC Complement Altern Med. 2013. 13: 1-10.
36.    Zhang  X, Tang X, Chen H. Inhibition of HIV replication by baicalin and S. baicalensis extracts in H9 cell culture. Chin Med Sci J. 1991; 6(4): 230-2.
37.    Lin H et al. Efficacy of Scutellaria baicalensis for the treatment of hand, foot, and mouth disease associated with encephalitis in patients infected with EV71: a multicenter, retrospective analysis. Bio Med Res Int. 2016 Article ID 5697571.
38.    Qiao X et al. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra ultra-high performance liquid chromatography coupled with hybrid quadrupole o rbitrap mass spectrometry and key ion filtering. J Chromatogr A. 2016; 1441: 83-95.
39.    Jo S et al. Inhibition of SARS SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020; 35(1): 145-151. 
40.    Jo S et al. Characteristics of flavonoid s as potent MERS MERS-CoV 3C 3C-like protease inhibitors. Chem Biol Drug Des. 2019; 94(6): 2023-2030.
41.    Rithiga SB, Shanmugasundaram S. Virtual Screening of Pentahydroxyflavone–A Potent COVID-19 Major Protease Inhibitor. Asian Journal of Research in Pharmaceutical Sciences. 2021; 11(1): 7-14.
42.    Shanmugapriya E, Ravichandiran V, Aanandhi MV. Molecular docking studies on naturally occurring selected flavones against protease enzyme of Dengue virus. Research J. Pharm. and Tech. 2016; 9(7): 929-932.
43.    Liu H et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Journal of Enzyme Inhibition and Medicinal Chemistry. 2021; 36(1): 497-503.
44.    Song J et al. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochemical Pharmacology. 2021; 183: 114302.
45.    Huang S et al. Baicalein inhibits SARS-CoV-2/VSV replication with interfering mitochondrial oxidative phosphorylation in a mPTP dependent manner. Signal Transduction and Targeted Therapy. 2020; 5(1): 1-3.
46.    Udrea AM, Mernea M, Buiu C, Avram S. Scutellaria baicalensis Flavones as potent drugs against acute respiratory injury during SARS-CoV-2 Infection: Structural Biology Approaches. Processes. 2020; 8(11): 1468.
47.    Su H, Yao S, Zhao W, Li M, Liu J, Shang W, Xu Y. Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. BioRxiv. 2020. https://doi.org/10.1101/ 2020.04.13.038687
48.    Yu C et al. Different extraction pretreatments significantly change the flavonoid contents of Scutellaria baicalensis. Pharm Biol. 2013; 51(10): 1228-1235. 
49.    Bhusari S, Morey S, Nikam K, Wakte P. Comparative Evaluation of Baicalein from Oroxylum indicum by using Conventional and Non-Conventional Extraction Methodology. Research Journal of Pharmacy and Technology. 2019; 12(4): 1817-1822.
50.    Li JH, Wang LS, Zou JM. Study on degradation of baicalin by endogenous enzymes in water extraction of Scutellaria baicalensis. Chin Trad Herb Drugs. 2009; 40: 397-400. 
51.    Sasaki K et al. Molecular characterization of a novel beta- glucuronidase from Scutellaria baicalensis Georgi. J Biol Chem. 2000; 275: 27466-27472. 
52.    Boyko NN, Pisarev DI, Zhilyakova ET, Maljutina AY, Novikov OO, Bocharnikova MA. Study of baicalin hydrolysis kinetics in the process of its extraction from Scutellaria baicalensis Georgi roots. Farmatsiya i Farmakologiya. 2019; 7(3): 129-137.
53.    Ma XD et al. Application of enzyme-assisted extraction of baicalin from Scutellaria baicalensis Georgi. Preparative Biochemistry and Biotechnology. 2020; 1-11.
54.    Kim YH et al. Liquid chromatography with tandem mass spectrometry for the simultaneous determination of baicalein, baicalin, oroxylin A and wogonin in rat plasma. Journal of Chromatography B. 2006; 844(2): 261-267.
55.    Kotani A, Kojima S, Hakamata H, Kusu F. HPLC with electrochemical detection to examine the pharmacokinetics of baicalin and baicalein in rat plasma after oral administration of a Kampo medicine. Analytical Biochemistry. 2006; 350(1): 99-104.
56.    Kim YH et al. Pharmacokinetics of baicalein, baicalin and wogonin after oral administration of a standardized extract of Scutellaria baicalensis, PF-2405 in rats. Archives of Pharmacal Research. 2007; 30(2): 260.
57.    Tong L, Wan M, Zhang L, Zhu Y, Sun H, Bi K. Simultaneous determination of baicalin, wogonoside, baicalein, wogonin, oroxylin A and chrysin of Radix scutellariae extract in rat plasma by liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2012; 70: 6-12.
58.    Wang C et al.Retention mechanism of pH‐peak‐focusing in countercurrent chromatographic separation of baicalin and wogonoside from Scutellaria baicalensis Georgi. Journal of Separation Science. 2020; 43(19): 3806-3815.
59.    Feng J et al. Simultaneous determination of baicalin, baicalein, wogonin, berberine, palmatine and jatrorrhizine in rat plasma by liquid chromatography-tandem mass spectrometry and application in pharmacokinetic studies after oral administration of traditional Chinese medicinal preparations containing scutellaria–coptis herb couple. Journal of Pharmaceutical and Biomedical Analysis. 2010; 53(3): 591-598.
60.    Lai MY et al. Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats. Journal of Pharmacy and Pharmacology. 2003; 55(2): 205-209.
61.    Islam MN, Chung HJ, Kim DH, Yoo HH. A simple isocratic HPLC method for the simultaneous determination of bioactive components of Scutellariae radix extract. Natural Product Research. 2012; 26(21): 1957-1962.
62.    Sagara K, Ito Y, Oshima T, Misaki T, Murayama H, Itokawa H. Simulatneous determination of baicalein, wogonin, oroxylin-A and their glucuronides in scutellariae radix by ion-pair high-performance liquid chromatography. Journal of Chromatography A. 1985; 328: 289-297. 
63.    Yang LX et al. Determination of flavone for Scutellaria baicalensis from different areas by HPLC. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China Journal of Chinese Materia Medica. 2002; 27(3): 166-170.
64.    Li HB, Jiang Y, Chen F. Separation methods used for Scutellaria baicalensis active components. Journal of Chromatography B. 2004; 812(1-2): 277-290.
65.    Han J, Ye M, Xu M, Sun J, Wang B, Guo D. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. Journal of Chromatography B. 2007; 848(2): 355-362.
66.    Jaiswal S, Chavhan SA, Shinde SA, Wawge NK. New Tools for Herbal Drug Standardization. Asian J. Res. Pharm. Sci. 2018; 8(3): 161-169.
67.    Ekka NR, Namdeo KP, Samal PK. Standardization Strategies for Herbal Drugs-An Overview. Research J. Pharm. and Tech. 2008; 1(4): 310-312.
68.    Bokov DO, Nizamova LA, Morokhina SL et al. Pharmacognostic studies of Origanum L. species Medicinal plant raw materials. Research Journal of Pharmacy and Technology. 13(9): 4365-4372.
69.    Sukmana BI, Edyson, Thahir H, Achmad H, Huldani, Bokov DO. Research review on secondary metabolite compounds of Mangifera casturi bark and their functions. International Journal of Pharmaceutical Research. 2020; 3(12): 2155-2161.
70.    Zhilkina V, Sachivkina NP, Ibragimova AN, Kovaleva TY, Molchanova MA, Radeva DV. Methods for the identification and quantitative analysis of biologically active substances from vitamin plants raw material. FEBS Open Bio. 2019; 9(S1): 285-286.
71.    Vatnikov Y, Rudenko P, Shopinskaya M et al. Effectiveness of biologically active substances from Hypericum perforatum L. in the complex treatment of purulent wounds. International Journal of Pharmaceutical Research. 2020; 4(12): 1108-1117.
72.    Bokov DO. Standardization of snowdrop (Galanthus L.) herbal pharmaceutical substances by ultraviolet-spectrophotometry. Asian J Pharm Clin Res. 2018; 11(10): 207-211.
73.    Vatnikov Y, Shabunin S, Karamyan A et al. Antimicrobial activity of Hypericum perforatum L. International Journal of Pharmaceutical Research. 2020; 12: 723-730.
74.    Nishith MC, Venkatesh MP. Herbal Drug Regulatory Landscape: Key Comparison between Russia and India. Research J. Pharm. and Tech. 2019; 12(12): 6153-6156.
75.    Mustafa A, Alvi AI, Siddiqui ZA, Meena RP. Heavy metals determination in Microwave digested aqueous extracts of fresh and market samples of some Plant origin drugs with reference to their preliminary comparative physico-chemical evaluation. Res. J. Pharmacognosy and Phytochem. 2021; 13(1): 11-17.
76.    Sindhu RK, Kaur P. Regulatory requirements and stability testing of ethnomedicinal plant products. Research J. Pharm. and Tech. 2020; 13(3): 1538-1542.
77.    Ye F et al. Quality evaluation of commercial extracts of Scutellaria baicalensis. Nutrition and Cancer. 2004; 49(2): 217-222.
78.    Hu LQ et al. Preliminary study on standardization of production and processing of Scutellaria baicalensis pieces. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China Journal of Chinese Materia Medica. 2019; 44(15): 3281-3286.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available