Author(s): K Shailaja, Preethi P, Sneha Mavis M, Sowndharya S, Tharani A

Email(s): shailajampharm@gmail.com

DOI: 10.52711/0974-360X.2026.00050   

Address: K Shailaja1*, Preethi P2, Sneha Mavis M2, Sowndharya S2, Tharani A2
1Professor, C L Baid Metha College of Pharmacy, Affiliated to “The Tamilnadu Dr. MGR Medical University”, Thoraipakkam, Chennai – 97, Tamilnadu, India.
2Pharm.D Intern, C L Baid Metha College of Pharmacy, Affiliated to “The Tamilnadu Dr. MGR Medical University”, Thoraipakkam, Chennai – 97, Tamilnadu, India.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
AIM And Objectives: The study aimed to estimate the prevalence and risk factors of Augmented Renal Clearance (ARC) in critically ill Intensive Care Unit (ICU) patients and compare Glomerular Filtration Rate (GFR) estimates using the Cockcroft-Gault (CG), Modification of Diet Renal Disease (MDRD), and Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) equations. Study Design: A purposive sampling technique was used to conduct a cross-sectional study among 80 patients who were hospitalized in the ICU. Data collection was performed over 3 months. The Statistical Package for Social Sciences, version 23, was used to analyze the data. ARC prevalence was calculated and multivariate logistic regression was used to identify risk factors. Various mathematical estimates of Creatinine Clearance (CrCl) were compared using Spearman's correlation and Bland-Altman plots. Results: ARC was present in 38 (46.3%), 39 (47.6%), and 30 (37.5%) patients based on CG, MDRD, and CKD-EPI equations respectively. Multivariate logistic regression analysis showed that age (p = 0.013), cerebrovascular accident (p = 0.010), and hypertension (p = 0.014) were independent risk factors for ARC. Bland Altman plots revealed a bias of -4.84ml/min/1.73m2 between the CG and CKD-EPI equation and -12.09 ml/min/1.73m2 between MDRD and CKD-EPI. The correlation coefficient between the CG and CKD-EPI equations was 0.763, whereas it was 0.743 for the MDRD and CKD-EPI equations. Conclusion: The significant independent risk factors were age, hypertension, and Cerebral Vascular Accident. In our population, estimated GFR by the MDRD and CG equations showed moderate agreement with eGFR measured by the CKD-EPI equation.


Cite this article:
K Shailaja, Preethi P, Sneha Mavis M, Sowndharya S, Tharani A. Assessment of Augmented Renal Clearance and Estimation of Glomerular Filtration Rate in ICU Patients. Research Journal of Pharmacy and Technology. 2026;19(1):346-1. doi: 10.52711/0974-360X.2026.00050

Cite(Electronic):
K Shailaja, Preethi P, Sneha Mavis M, Sowndharya S, Tharani A. Assessment of Augmented Renal Clearance and Estimation of Glomerular Filtration Rate in ICU Patients. Research Journal of Pharmacy and Technology. 2026;19(1):346-1. doi: 10.52711/0974-360X.2026.00050   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2026-19-1-50


REFERENCE:
1.    Nazer L H, AbuSara A K, Kamal Y. Augmented renal clearance in critically ill patients with cancer (ARCCAN Study): A prospective observational study evaluating prevalence and risk factors. Pharmacology Research and Perspectives. 2021; Apr; 9(2). doi:10.1002/prp2.747.
2.    Bilbao-Meseguer I, et al. Augmented Renal Clearance in Critically Ill Patients: A Systematic Review. Clinical Pharmacokinetics. 2018; Sep; 57(9): 1107-1121. doi:10.1007/s40262-018-0636-7.
3.    Balk RA. Systemic inflammatory response syndrome (SIRS): where did it come from and is it still relevant today?. Virulence. 2014; Jan 1; 5(1): 20-26. doi:10.4161/viru.27135.
4.    Karankumar V, Biradar, Amit Pawar. Corticosteroids and way of inflammation. Research Journal of Pharmacology and Pharmacodynamics. 2012; Feb 28; 4(1): 45-54.
5.    Samir Derouiche, Taissir Cheradid, Messaouda Guessoum. Heavy metals, Oxidative stress and Inflammation in Pathophysiology of Chronic Kidney disease - A Review. Asian Journal of Pharmacy and Technology. 2020; June; 10(3): 202-206. doi: 10.5958/2231-5713.2020.00033.1
6.    Monika G. Shinde, et al. A Review on Inflammation and its Pharmacotherapy. Asian Journal of Pharmacy and Technology. 2023; 13(3): 201-6. doi: 10.52711/2231-5713.2023.00036
7.    Udy AA, et al. Augmented renal clearance: implications for antibacterial dosing in the critically ill: Implications for antibacterial dosing in the critically ill. Clinical Pharmacokinetics. 2010; 49(1): 1–16. Doi:10.2165/11318140-000000000-00000.
8.    Udy AA, et al. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Critical Care. 2013; Feb 28; 17(1): R35. doi:10.1186/cc12544.
9.    Baptista JP, et al. Prevalence and risk factors for augmented renal clearance in a population of critically ill patients. Journal of Intensive Care Medicine. 2020; Oct 29; 35(10): 1044–52. doi:10.1177/0885066618809688.
10.    Dhivya S, et al. Serum creatinine and eGFR are affected in female hypothyroid patients with poor Thyroid control. Asian Journal of Pharmacy and Technology. 2020; 10(4): 241-244. doi: 10.5958/2231-5713.2020.00040.9
11.    MacArthur R D, et al. Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clinical Infectious Diseases. 2004 Jan 15; 38(2): 284-288. 
12.    Udy AA, Roberts JA, Lipman J. Implications of augmented renal clearance in critically ill patients. Nature Review Nephrology. 2011; Jul 19; 7(9): 539-543. doi:10.1038/nrneph.2011.92.
13.    Hobbs AL, et al. Implications of augmented renal clearance on drug dosing in critically ill patients: a focus on antibiotics. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2015; Nov; 35(11): 1063-75. doi:10.1002/phar.1653.
14.    Kishnani Khushboo, Bhandari Saloni, Rathore Kamal Singh. A Briefing of a Global Crisis: Antibiotic Resistance. Asian Journal of Research and Pharmaceutical Sciences. 2020; Nov 18; 10(4): 264-272. doi: 10.5958/2231-5659.2020.00047.8
15.    Mr. Bhushan P, et al. Comparative Study of Gatifloxacin and Sparfloxacin as Quinolone Antibiotics: An Overview. Asian Journal of Pharmaceutical Research. 2018; Mar 22; 8(1): 44-46. doi: 10.5958/2231-5691.2018.00009.6
16.    Ganesh G. Dhakad,et al.Review on Antibiotics. Asian Journal of Research in Chemistry. 2022; 15(1): 91-6. doi: 10.52711/0974-4150.2022.00015
17.    Ruiz S, et al. Screening of patients with augmented renal clearance in ICU: taking into account the CKD-EPI equation, the age, and the cause of admission. Annals of Intensive Care. 2015; Dec 14; 5(1): 49. doi:10.1186/s13613-015-0090-8.
18.    Chen IH, Nicolau DP. Augmented Renal Clearance and How to Augment Antibiotic Dosing. Antibiotics. 2020; Jul 9; 9(7): 393. doi:10.3390/antibiotics9070393.
19.    CKD-EPI Creatinine Equation (2021) [Internet]. National Kidney Foundation. 2015 [cited 2023 Apr 5].
20.    Baptista JP, et al. Decreasing the time to achieve therapeutic vancomycin concentrations in critically ill patients: developing and testing of a dosing nomogram. Critical Care. 2014 Dec 5; 18(6): 654. doi:10.1186/s13054-014-0654-2.
21.    Aréchiga-Alvarado NA, et al. Population Pharmacokinetics of Amikacin Administered Once Daily in Patients with Different Renal Functions. Antimicrobial Agents and Chemotherapy. 2020; Apr 21; 64(5). doi:10.1128/aac.02178-19.
22.    Anitha Victoria Noronha, Purohith Saraswathi. Review-Antibiotic Beads. International Journal of Advances in Nursing Management 2016; 4(2): 164-166. doi: 10.5958/2454-2652.2016.00037.8
23.    Kawano Y, et al. Outcomes in patients with infections and augmented renal clearance: A multicenter retrospective study. PLoS One. 2018; Dec 10; 13(12): e0208742. doi:10.1371/journal.pone.0208742.
24.    Ghassan F. Mohammmed, Safaa M. Sultan, Yaman Q. Sadullah. The relationship between Creatinine and patients with Renal Failure associated with anemia. Research Journal of Pharmacy and Technology. 2020; 13(4): 1633-1635. doi: 10.5958/0974-360X.2020.00296.6
25.    Barletta JF, et al. The importance of empiric antibiotic dosing in critically ill trauma patients: Are we under-dosing based on augmented renal clearance and inaccurate renal clearance estimates?. Journal of Trauma and Acute Care Surgery. 2016; Dec; 81(6): 1115–21. doi:10.1097/TA.0000000000001211.
26.    Huttner A, et al. Augmented renal clearance, low β-lactam concentrations and clinical outcomes in the critically ill: An observational prospective cohort study. International Journal of Antimicrobial Agents. 2015; Apr; 45(4): 385–92. doi:10.1016/j.ijantimicag.2014.12.017.
27.    Campassi ML, et al. Augmented renal clearance in critically ill patients: incidence, associated factors and effects on vancomycin treatment. Revista Brasileira de Terapia Intensiva. 2014; Jan-Mar; 26(1): 13-20. doi:10.5935/0103-507x.20140003.
28.    Mulder MB, et al. Risk factors and clinical outcomes associated with augmented renal clearance in trauma patients. Journal of Surgical Research. 2019; Dec; 244: 477–83. doi:10.1016/j.jss.2019.06.087.
29.    Egea A, et al.  Augmented renal clearance in the ICU: estimation, incidence, risk factors and consequences-a retrospective observational study. Annals of Intensive Care. 2022; Sep 26; 12(1): 88. doi: 10.1186/s13613-022-01058-w.
30.    Ruheena Yasmeen, et al. Study of Anticoagulants low molecular weight heparin and Unfractionated heparin in the management of Non-St elevation Myocardial Infarction. Research J. Pharm. and Tech. 2020; Jul 28; 13(7): 3151-3155. doi: 10.5958/0974-360X.2020.00557.0
31.    Abdel El Naeem HEM, Abdelhamid MHE, Atteya DAM. Impact of augmented renal clearance on enoxaparin therapy in critically ill patients. Egyptian Journal of Anaesthesia. 2016; Dec 8; 33(1): 113-7. doi:10.1016/j.egja.2016.11.001.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available