Author(s): Jekson Martiar Siahaan, Tengku Muhammad Fauzi, Hadyanto Lim

Email(s): jeksonmartiar@delihusada.ac.id

DOI: 10.52711/0974-360X.2026.00059   

Address: Jekson Martiar Siahaan1*, Tengku Muhammad Fauzi2, Hadyanto Lim3
1Department of Physiology, Faculty of Medicine, Institut Kesehatan Deli Husada, Delitua, Indonesia.
2Department of Biochemistry, Faculty of Medicine, Universitas Methodist Indonesia, Medan, Indonesia.
3Department of Pharmacology, Faculty of Medicine, Methodist University of Indonesia, Medan, Indonesia.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Introduction: Type 2 diabetes mellitus is highly associated with apoptosis The several causes of T2DM include insulin resistance caused by obesity, inadequate insulin synthesis, and loss of -cell mass owing to -cell death. The ratio of pro- and anti-apoptotic Bcl-2 proteins (Bad, Bid, Bik, and Bax) to apoptosis is mostly responsible for hyperglycemia-induced cell death. Sechium edule is pharmacologically recognized to lower blood glucose in rats. Objective: to examine apoptosis parameters in rats with type II diabetes. Method: This study was divided into six groups: control, diabetic rats, positive control, treatment I (50 mg/kgbw extract), treatment II (100 mg/kgbw extract), and treatment III (mg/kgbw extract). All rats were sacrificed at the conclusion of the research, and their blood was collected for further analysis of caspase-3, caspase-8, Bcl-x, and Bcl-2. Results: showed that pro apoptotic parameters such as caspase-3, caspase-8, and bcl-xl concentration were significantly reduced (p<0,05) in the group of treatment III compared to the level of pro apoptotic in diabetic rats, while anti apoptotic bcl-2 parameters were significantly increased (p<0,05) in the group of treatment III compared to diabetic rats. Conclusion: We demonstrated that injection of STZ and administration of Sechium edule extract ethanol modulates apoptotic parameters. The ethanol extract of Sechium edule reduces pro-apoptosis characteristics. This plant has the potential to become a diabetic medication candidate.


Cite this article:
Jekson Martiar Siahaan, Tengku Muhammad Fauzi, Hadyanto Lim. Explore the Antidiabetic Potential of Sechium edule: Ethanol Extract's Impact on Apoptotic Markers Caspase-3, Caspase-8, Bcl-2, and Bcl-xL in Type II Diabetic Rats. Research Journal of Pharmacy and Technology. 2026;19(1):404-0. doi: 10.52711/0974-360X.2026.00059

Cite(Electronic):
Jekson Martiar Siahaan, Tengku Muhammad Fauzi, Hadyanto Lim. Explore the Antidiabetic Potential of Sechium edule: Ethanol Extract's Impact on Apoptotic Markers Caspase-3, Caspase-8, Bcl-2, and Bcl-xL in Type II Diabetic Rats. Research Journal of Pharmacy and Technology. 2026;19(1):404-0. doi: 10.52711/0974-360X.2026.00059   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2026-19-1-59


REFERENCES:
1.    Otero Sanchez L, Chen Y, Lassailly G, Qi X. Exploring the links between types 2 diabetes and liver-related complications: A comprehensive review. United European Gastroenterol J. 2024; Mar; 12(2): 240-251. doi: 10.1002/ueg2.12508. Epub 2023 Dec 16. PMID: 38103189; PMCID: PMC10954434.
2.    Manilla V, Santopaolo F, Gasbarrini A, Ponziani FR. Type 2 Diabetes Mellitus and Liver Disease: Across the Gut-Liver Axis from Fibrosis to Cancer. Nutrients. 2023; May 29; 15(11): 2521. doi: 10.3390/nu15112521. PMID: 37299482; PMCID: PMC10255218.
3.    Cernea S. NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay. Life (Basel). 2024; Feb 18; 14(2): 272. doi: 10.3390/life14020272. PMID: 38398781; PMCID: PMC10890557
4.    Coman LI, Coman OA, Bădărău IA, Păunescu H, Ciocîrlan M. Association between Liver Cirrhosis and Diabetes Mellitus: A Review on Hepatic Outcomes. J Clin Med. 2021; Jan 12; 10(2): 262. doi: 10.3390/jcm10020262. PMID: 33445629; PMCID: PMC7827383
5.    Stancic A, Velickovic K, Markelic M, Grigorov I, Saksida T, Savic N, Vucetic M, Martinovic V, Ivanovic A, Otasevic V. Involvement of Ferroptosis in Diabetes-Induced Liver Pathology. Int J Mol Sci. 2022; Aug 18; 23(16): 9309. doi: 10.3390/ijms23169309. PMID: 36012572; PMCID: PMC9409200.
6.    Oana-Patricia Zaharia, Sofia Antoniou, Pavel Bobrov, Yanislava Karusheva, Kálmán Bódis, Yuliya Kupriyanova, Vera Schrauwen-Hinderling, Amalia Gastaldelli, Julia Szendroedi, Robert Wagner, Volker Burkart, Michael Roden, GDS Group; Reduced Insulin Clearance Differently Relates to Increased Liver Lipid Content and Worse Glycemic Control in Recent-Onset Type 2 and Type 1 Diabetes. Diabetes Care. 1 December 2023; 46 (12): 2232–2239. https://doi.org/10.2337/dc23-1267
7.    Shafras M, Rasangi Sabaragamuwa, Suwair M. Role of dietary antioxidants in diabetes: An overview. Food chemistry advances. 2024;4:100666-100666. doi:https://doi.org/10.1016/j.focha.2024.100666
8.    Shabalala SC, Johnson R, Basson AK, Ziqubu K, Hlengwa N, Mthembu SXH, Mabhida SE, Mazibuko-Mbeje SE, Hanser S, Cirilli I, et al. Detrimental Effects of Lipid Peroxidation in Type 2 Diabetes: Exploring the Neutralizing Influence of Antioxidants. Antioxidants. 2022; 11(10): 2071. https://doi.org/10.3390/antiox11102071
9.    Yavuz O, Gungor Cagdas Dincel, Yildirim S, Saeed El-Ashram, Ebtesam Al Olayan. Impact of apoptosis and oxidative stress on pancreatic beta cell pathophysiology in streptozotocin-induced Type 1 diabetes mellitus. Tissue and Cell. 2024; 91: 102552-102552. doi:https://doi.org/10.1016/j.tice.2024.102552
10.    Maja Mitrašinović-Brulić, Amela Dervišević, Asija Začiragić, et al. Vitamin D3 attenuates oxidative stress and regulates glucose level and leukocyte count in a semi-chronic streptozotocin-induced diabetes model. Journal of Diabetes and Metabolic Disorders. 2021; 20(1): 771-779. doi:https://doi.org/10.1007/s40200-021-00814-2
11.    Sinaga YA, Lim H, Siahaan JM. Coffea canephora var. Robusta Modulates Testosterone and CRISP-1 Levels in STZ-Induced Diabetic Rats. Research Journal of Pharmacy and Technology. Published online February 27, 2025: 739-743. doi:https://doi.org/10.52711/0974-360x.2025.00109
12.    Prasad, M.K., Mohandas, S. and Ramkumar, K.M. Dysfunctions, molecular mechanisms, and therapeutic strategies of pancreatic β-cells in diabetes. Apoptosis 28; 958–976 (2023). https://doi.org/10.1007/s10495-023-01854-0
13.    Zhao Z, Wu W, Zhang Q, et al. Mechanism and therapeutic potential of hippo signaling pathway in type 2 diabetes and its complications. Biomedicine and Pharmacotherapy. 2025; 183: 117817. doi:https://doi.org/10.1016/j.biopha.2025.117817
14.    Tomita T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn J Basic Med Sci. 2016; Aug 2; 16(3): 162-79. doi: 10.17305/bjbms.2016.919. Epub 2016 May 22. PMID: 27209071; PMCID: PMC4978108.
15.    You S, Zheng J, Chen Y, Huang H. Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Frontiers in Endocrinology. 2022; 13. doi:https://doi.org/10.3389/fendo.2022.976465
16.    Zaman S. Evaluation of BCL-2 and BAX Genes Expression in Hyperglycemia-Induced NIH Cells. Scientific Inquiry and Review. 2021; 5(2). doi:https://doi.org/10.32350/sir.52.04
17.    Perez-Serna AA, Guzman-Llorens D, Dos Santos RS, Marroqui L. Bcl-2 and Bcl-xL in Diabetes: Contributions to Endocrine Pancreas Viability and Function. Biomedicines. 2025; 13(1): 223. https://doi.org/10.3390/biomedicines13010223
18.    Magnuson MA, Osipovich AB. Ca2+ signaling and metabolic stress-induced pancreatic β-cell failure. Frontiers in Endocrinology. 2024; 15. doi:https://doi.org/10.3389/fendo.2024.1412411
19.    Kim WH, Lee JW, Suh YH, et al. Exposure to Chronic High Glucose Induces β-Cell Apoptosis Through Decreased Interaction of Glucokinase With Mitochondria: Downregulation of Glucokinase in Pancreatic β-Cells. Diabetes. 2005; 54(9): 2602-2611. doi:https://doi.org/10.2337/diabetes.54.9.2602
20.    Maedler K, Storling J, Sturis J, et al. Glucose- and Interleukin-1 -Induced  -Cell Apoptosis Requires Ca2+ Influx and Extracellular Signal-Regulated Kinase (ERK) 1/2 Activation and Is Prevented by a Sulfonylurea Receptor 1/Inwardly Rectifying K+ Channel 6.2 (SUR/Kir6.2) Selective Potassium Channel Opener in Human Islets. Diabetes. 2004; 53(7): 1706-1713. doi:https://doi.org/10.2337/diabetes.53.7.1706
21.    Siahaan JM, Illyas S, Lindarto D, Nainggolan M. The effect of ethanol extract and ethyl acetic fraction of standardised chayote squash to reduce blood sugar level and the function of pancreatic ß-cell of male albino rats induced by STZ-NA-HFD. Rasayan J Chem. 2021; 14(1): 65–73.
22.    Siahaan JM, Illyas S, Lindarto D, Nainggolan M. The effect of ethanol and ethyl acetate fraction of chayote fruit (Sechium edule Jacq. Swartz) on the oxidative stress and insulin resistance of male white rat model type 2 diabetes mellitus. Open Access Maced J Med Sci. 2020; 8(A): 962–969.
23.    Siahaan JM, Endy Julianto, Hendrika Andriana Silitonga. The Effects of Ethanol Extract and Ethyl Acetate Fractionation of Sechium Edule Jacq. Swartz on Triglyceride Levels in Male Rats with Type 2 Diabetes Mellitus. Indonesian Journal of Medicine. 2019; 4(4): 371-375. doi:https://doi.org/10.26911/theijmed.2019.4.4.233
24.    Siahaan JM, Illyas S, Lindarto D, Nainggolan M. Effect of ethanol extract of chayote (Sechium edule Jacq. Swartz) on the activity of glutathione peroxidase (GPx) in house mice (Mus musculus L) strain DD Webster hyperglycemia induced by streptozotocin (STZ). Indonesian J Med. 2020; 1(1): 44-49.
25.    Siahaan JM. Effect of antihyperglycemic Sechium edule Jacq. Swartz ethanol extract on histopathologic changes in hyperglycemic Mus musculus L. Indonesian J Med. 2017; 2(2): 86-93. doi:10.26911/theijmed.2017.02.02.02
26.    Mahmoud MF, Abdelaal S, Mohammed HS, et al. Syzygium jambos extract mitigates pancreatic oxidative stress, inflammation and apoptosis and modulates hepatic IRS-2/AKT/GLUT4 signaling pathway in streptozotocin-induced diabetic rats. Biomedicine and Pharmacotherapy. 2021; 142: 112085-112085. doi:https://doi.org/10.1016/j.biopha.2021.112085
27.    Fathi FEZM, Sadek KM, Khafaga AF, Al Senosy AW, Ghoniem HA, Fayez S, Zeweil MF. Vitamin D regulates insulin and ameliorates apoptosis and oxidative stress in pancreatic tissues of rats with streptozotocin-induced diabetes. Environ Sci Pollut Res Int. 2022 Dec;29(60):90219-90229. doi: 10.1007/s11356-022-22064-2. Epub 2022 Jul 22. Erratum in: Environ Sci Pollut Res Int. 2022. Dec; 29(60): 90230. doi: 10.1007/s11356-022-22427-9. PMID: 35864405; PMCID: PMC9722851.
28.    Jafari Anarkooli I, Sankian M, Ahmadpour S, Varasteh AR, Haghir H. Evaluation of Bcl-2 family gene expression and Caspase-3 activity in hippocampus STZ-induced diabetic rats. Experimental Diabetes Research. 2008; 2008: 638467. doi:https://doi.org/10.1155/2008/638467
29.    Svandova E, Lesot H, Sharpe P, Matalova E. Making the head: Caspases in life and death. Frontiers in Cell and Developmental Biology. 2023; 10. doi:https://doi.org/10.3389/fcell.2022.1075751
30.    Abdelghany L, Sillapachaiyaporn C, Zhivotovsky B. The concealed side of caspases: beyond a killer of cells. Cell Mol Life Sci. 2024; Dec 3; 81(1): 474. doi: 10.1007/s00018-024-05495-7. PMID: 39625520; PMCID: PMC11615176.
31.    Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis. 2022; 27(7-8): 482-508. doi:https://doi.org/10.1007/s10495-022-01735-y
32.    Liu Y, Yu R, Wang X, et al. Research progress of the effective active ingredients of Astragalus mongholicus in the treatment of diabetic peripheral neuropathy. Biomedicine and Pharmacotherapy. 2024; 173: 116350-116350. doi:https://doi.org/10.1016/j.biopha.2024.116350
33.    Tagde P, Tagde P, Islam F, Tagde S, Shah M, Hussain ZD, Rahman MH, Najda A, Alanazi IS, Germoush MO, et al. The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules. 2021; 26(23): 7109. https://doi.org/10.3390/molecules26237109
34.    Garodia P, Hegde M, Kunnumakkara AB, Aggarwal BB. Curcumin, inflammation, and neurological disorders: How are they linked? Integrative Medicine Research. 2023; 12(3): 100968. doi:https://doi.org/10.1016/j.imr.2023.100968
35.    Kilanowska A, Ziółkowska A. Apoptosis in Type 2 Diabetes: Can It Be Prevented? Hippo Pathway Prospects. International Journal of Molecular Sciences. 2022; 23(2): 636. https://doi.org/10.3390/ijms23020636
36.    Xu, Hl., Wan, Sr., An, Y. et al. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov. 10, 399 (2024). https://doi.org/10.1038/s41420-024-02168-z
37.    Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomedicine and Pharmacotherapy. 2024; 177: 117122-117122. doi:https://doi.org/10.1016/j.biopha.2024.117122
38.    Keshtkar S, Kaviani M, Jabbarpour Z, Geramizadeh B, Motevaseli E, Nikeghbalian S, Shamsaeefar A, Motazedian N, Al-Abdullah IH, Ghahremani MH, Azarpira N. Protective effect of nobiletin on isolated human islets survival and function against hypoxia and oxidative stress-induced apoptosis. Sci Rep. 2019; Aug 12; 9(1): 11701. doi: 10.1038/s41598-019-48262-6. PMID: 31406275; PMCID: PMC6690971.
39.    Siahaan JM, Fauzi TM, Lim H. Antiapoptosis Effect of Chayote Ethanol Extract (Sechium edule (Jacq.) Swartz) on Rats with Type 2 Diabetes Mellitus. The International Conference on Public Health Proceeding. 2022; 7(01): 129-129. doi:https://doi.org/10.26911/AB.ICPH.09.2022.129
40.    Matos AL, Bruno DF, Ambrósio AF, Santos PF. The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients. 2020; Oct 16; 12(10): 3169. doi: 10.3390/nu12103169. PMID: 33081260; PMCID: PMC7603001.
41.    Aghababaei F, Hadidi M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals (Basel). 2023; Jul 18; 16(7): 1020. doi: 10.3390/ph16071020. PMID: 37513932; PMCID: PMC10384403.
42.    Shahbaz M, Naeem H, Imran M, et al. Chrysin a promising anticancer agent: recent perspectives. International Journal of Food Properties. 2023; 26(1): 2294-2337. doi:https://doi.org/10.1080/10942912.2023.2246678

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available