Author(s): Sneha V. Sawant, Shirish V. Sankpal, Kisan R. Jadhav, Vilasrao J. Kadam

Email(s): manu2sneha@gmail.com

DOI: Not Available

Address: Sneha V. Sawant*, Shirish V. Sankpal, Dr. Kisan R. Jadhav, Dr. Vilasrao J. Kadam.
Department of Pharmaceutics, Bharati Vidyapeeth's College of Pharmacy, Sector-8, CBD Belapur, Navi Mumbai 400614.
*Corresponding Author

Published In:   Volume - 5,      Issue - 5,     Year - 2012


ABSTRACT:
Hydrogels are crosslinked polymer networks, have been widely investigated as the carrier for drug delivery systems. These biomaterials have gained attention owing to their peculiar characteristics like swelling in aqueous medium, pH and temperature sensitivity or sensitivity towards other stimuli. Due to their high water content, these gels resemble natural living tissue more than any other type of synthetic biomaterial. Several techniques have been reported for the synthesis of hydrogels like co-polymerization/crosslinking. Hydrogel can be useful in drug delivery, tissue engineering and wound healing applications. Some environmental variables, such pH and elevated temperatures, are found in the body. For this reason, either pH-sensitive and/or temperature sensitive hydrogels can be used for site-specific controlled drug delivery. Hydrogels that are responsive to specific molecules, such as glucose or antigens, can be useful as drug delivery systems.


Cite this article:
Sneha V. Sawant, Shirish V. Sankpal, Kisan R. Jadhav, Vilasrao J. Kadam. Hydrogel as drug delivery system. Research J. Pharm. and Tech. 5(5): May2012; Page 561-569.

Cite(Electronic):
Sneha V. Sawant, Shirish V. Sankpal, Kisan R. Jadhav, Vilasrao J. Kadam. Hydrogel as drug delivery system. Research J. Pharm. and Tech. 5(5): May2012; Page 561-569.   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2012-5-5-22


REFERENCES

1.       Bruguerolle B. Chronopharmacokinetics: current status. Clin. Pharmacokinet.1998; 35: 83–94.

2.       Dagani R. Intelligent gels. Chem. Eng. News.1997; 75(23): 26–36.

3.       Kost J. Intelligent drug delivery systems. Encyclopedia of Controlled Drug Delivery. John Wiley and Sons, 1999, 445–459.

4.       Peppas NA., Mikos AG. Preparation methods and structure of hydrogels. Hydrogels in Medicine and Pharmacy. CRC Press, Boca Raton, FL, 1986, 1:1-27.

5.       Peppas NA., Mongia NK. Ultrapure poly (vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics. Eur. J. Pharm. Biopharm.1997; 43: 51-58.

6.       Stauffer SR., Peppas NA. Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing.Polymer. 1992; 33: 3932-3936.

7.       Flory PJ., Rehner J. Statisticalmechanicsof cross-linked polymer networks. II. Swelling. J. Chem. Phys.1943; 11: 521-526.

8.       Flory PJ. Statistical mechanics of swelling of network structures. J.Chem. Phys.1950; 18: 108-111.

9.       Jatav VJ., Singh H. Recent Trends on Hydrogel in Human Body. Int. J. Res. In  Pharma. and  Biomed. Sci. 2011; 2 (2):442-447.

10.     Peppas NA., Colombo P. Analysis of drug release behavior fromswellable polymer carriers using the dimensionality index. J.Control. Release.1997; 45: 35-40.

11.     Nedkov E., Tsvetkova S. Structure of poly(ethylene glycol) hydrogels obtained by gamma irradiation.Radiat. Phys. Chem.1994; 44: 81-87.

12.     Peppas NA. et al Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control.Release. 1999; 62: 81-87.

13.     Akkas P. et al.  The effect of external stimuli on bovine serum albumin adsorption capacity of poly(acrylamide/maleic acid) hydrogels prepared by gamma rays. Radiat. Phys.Chem.1999; 55:717-721.

14.     Peppasa NA. et al  Hydrogels in pharmaceutical formulations. Eur.J.of Pharma. And Biopharm. 2000; 50: 27-46.

15.     Ganji F., Vasheghani-Farahani E. Hydrogels in Controlled Drug Delivery Systems.Iranian Polymer Journal.2009; 18(1): 63-88

16.     Qiu Y., Park K. Environment-sensitive hydrogels for drugdelivery. Adv Drug Deliv. Rev. 2001; 53:321-39

17.     Miyazaki S. et al. Thermally reversible xyloglucan gels asvehicles for rectal drug delivery. J Control Release. 1998; 56:75-83.

18.     Ramanathan S., Block L.H. The use of chitosan gels as matricesfor electrically-modulated drug delivery. J Control Release. 2001; 70:109-23.

19.     Tomatsu I.et al. Photoresponsive hydrogels for biomedical applications.Adv.DrugDeliv.Rev.2011; 63: 1257–1266.

20.     Aikawa K.et al. Drug release from pH-response polyvinylacetaldiethylaminoacetate hydrogel, and application to nasaldelivery. Int J Pharm.1998; 168:181-8.

21.     Guo J.et al. Pharmaceutical applications of naturally occurring water-soluble polymers. PharmSciandTechnol Today. 1998;1:254-61.

22.     Obaidat AA., Park K. Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials.1997; 18:801-6.

23.     Yamane S., Akiyoshi K. Nanogel- inorganic hybrid; Synthesis and characterization of polysaccharide calcium phosphate nanomaterials.Eur. Cells Mater. 2007; 14(3):113

24.     Hamidi M. et al. Hydrogel nanoparticles in drug delivery. Adv.DrugDeliv. Rev. 2008; 60: 1638–1649.

25.     Satish CS. et al. Hydrogel as controlled drug delivery systems: Synthesis, crosslinking,water and drug transport.2006;68(2):133-140.

26.     Morishita M. et al.Elucidation of the mechanism of incorporation of insulin in controlled release system based on complexation polymer. J. Control. Release.2002; 81:25-32

27.     27. Zhang K.,X.Y.Wu. Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J. Control. Release.2002; 80:169-178.

28.     Liu Ning et al. Radiation synthesis and characterization of polyDMAEMA hydrogel. Radiation physics and chemistry.2001; 61:69-73

29.     Hennink W.E., Nostrum C.F. The effect of network charge on the immobilization and release of proteins from chemically crosslinked dextran hydrogels. Adv.DrugDeliv. Rev.2002, 54: 13-36.

30.     Yamamoto M. Bone regeneration by transforming growth factor beta 1 released from biodegradable hydrogel. J. Control. Release.2000; 64:133-142.

31.     Eagland D., Crowthe, Butler CJ. Complexation between polyoxyethylene and polymethacrylic acid-the importance of molar mass of polyoxyethylene. Eur.Poly. J. 1994; 30: 767-773.

32.     Ko JA., Park HJ., Hwang J.S., Park J.B. and Lee J.S. Preparation of chitosan microparticles intended for controlled drug delivery.Int. J. Pharm.2002; 249:165-174.

33.     Berger J., Reist M., Mayer JM., Felt O., Peppas NA. and Gurny R. Structure and interaction in chitosan hydrogel formed by complexation or aggregation for biomedical application.Eur. J. Pharm. Biopharm.2004; 57: 35-52.

34.     Amin S., Rajabnezhad S., Kohli K. Hydrogels as potential drug delivery systems Scientific Research and Essay.2009; 3 (11): 1175-1183.

35.     Kubo W., Miyazaki S., Attwood D. Oral sustained delivery ofparacetamol from in situ-gelling gellan and sodium alginateformulations. Int J Pharm. 2003; 258:55-64.

36.     Kazuhiro M., Atsushi N., Shinichi F., Katsuaki M., Suong H. and Ikada Y. Evaluation of polyvinyl Alcohol Hydrogelas a Sustained-Release Vehicle for Rectal Administration of Indomethacin. J. Pharmaceutical Research.1989; 6(4):442-447.

37.     Edsman K., Carlfors J, Petersson R. Rheological evaluationof poloxamers as an in situ gel for ophthalmic use. Eur J Pharm Sci.1998; 6:105-12.

38.     Polyurethane hydrogel drug reservoirs foruse in transdermal drug delivery systems,and associated methods of manufactureand use, US Patent5902603, May 11,1999.

39.     Vermani K., Garg S. The scope and potential of vaginal drug delivery. Pharm SciandTechnol Today.2000; 3:359-64.

40.     Ricci EJ., Bentley MV., Farah M., Bretas R., Marchetti JM. Rheological characterization of Poloxamer 407 lidocaine hydrochloride gels. Eur J Pharm Sci.2002; 17:161-7.

41.     Des Noyer JR., McHugh A.J. The effect of Pluronic on theprotein release kinetics of an injectable drug delivery system. J Control Release.2008; 6:15-24.       

42.     Aikawa K., Mitsutake A., Uda H., Tanaka S., Shimamura H., Aramaki Y.et al. Drug release from pH-response polyvinylacetaldiethylaminoacetate hydrogel, and application to nasaldelivery. Int J Pharm. 1998;168:181-8.

43.     Pal K., Banthial AK, Mazumdar DK. Polymeric hydrogel: Characterization and biomedical application- A mini review. Designed monomer and polymer.2009;12: 197-200.

44.     Lee, Li Z, Huang L. Thermosensitive hydrogel as a Tgf- beta 1 gene delivery vehicle enhances diabetic wound healing. Pharm Res. 2003; 20: 1995-2000.

45.     N.J.M Lin, Cheung PJ, Wilson DL, Bellamkonda RV. Sustained in vitro gene delivery from agarose hydrogel prolongs non viral gene expression in skin. Tissue Eng. 2005, 11: 546-555.

46.     Mageed Z, Haider M, Cappello J and H. Ghandehari. In vitro and in vivo evaluation of recombinant silk –elastin like hydrogels for cancer gene therapy. J control Release, 2004; 94: 433-445.

47.     http://www.lbl.gov/TechTransfer/techs/lbnl2398.html

48.     Kobayashi T et.al. Motility and growthof human bone-marrow mesenchymalstem cells during ex vivo expansion inautologous serum. J Bone Joint Surg Br, 2005; 87: 1426-1433.

49.     Hoffman AS. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews. 2002; 54(1): 3-12.

50.     Deshpande AA. Intravaginal drug delivery.Drug Dev. Ind. Pharm.1992; 18:1225-1279

51.     http://www.lifecore.com/MoreAboutHyaluronan/CorgelBioHydrogel/tabid/65/Default.aspx.

 

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available