REFERENCES
1. Bruguerolle B.
Chronopharmacokinetics: current status. Clin.
Pharmacokinet.1998; 35: 83–94.
2. Dagani R. Intelligent gels. Chem. Eng. News.1997; 75(23):
26–36.
3. Kost J. Intelligent drug
delivery systems. Encyclopedia of
Controlled Drug Delivery. John Wiley and Sons, 1999, 445–459.
4. Peppas NA., Mikos AG.
Preparation methods and structure of hydrogels. Hydrogels in Medicine and
Pharmacy. CRC Press, Boca Raton, FL, 1986, 1:1-27.
5. Peppas NA., Mongia NK. Ultrapure
poly (vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics.
Eur. J. Pharm. Biopharm.1997; 43: 51-58.
6. Stauffer SR., Peppas NA.
Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic
processing.Polymer. 1992; 33: 3932-3936.
7. Flory PJ., Rehner J.
Statisticalmechanicsof cross-linked polymer networks. II. Swelling. J. Chem.
Phys.1943; 11: 521-526.
8. Flory PJ. Statistical mechanics
of swelling of network structures. J.Chem. Phys.1950; 18: 108-111.
9.
Jatav VJ., Singh H. Recent Trends on
Hydrogel in Human Body. Int. J. Res. In
Pharma. and Biomed. Sci. 2011; 2
(2):442-447.
10. Peppas NA., Colombo P. Analysis
of drug release behavior fromswellable polymer carriers using the
dimensionality index. J.Control. Release.1997; 45: 35-40.
11. Nedkov E., Tsvetkova S.
Structure of poly(ethylene glycol) hydrogels obtained by gamma irradiation.Radiat.
Phys. Chem.1994; 44: 81-87.
12. Peppas NA. et al Poly(ethylene
glycol)-containing hydrogels in drug delivery. J. Control.Release. 1999; 62:
81-87.
13. Akkas P. et al. The effect of external stimuli on bovine
serum albumin adsorption capacity of poly(acrylamide/maleic acid) hydrogels
prepared by gamma rays. Radiat. Phys.Chem.1999; 55:717-721.
14. Peppasa NA. et al Hydrogels in pharmaceutical formulations.
Eur.J.of Pharma. And Biopharm. 2000; 50: 27-46.
15. Ganji F., Vasheghani-Farahani E.
Hydrogels in Controlled Drug Delivery
Systems.Iranian Polymer Journal.2009; 18(1): 63-88
16. Qiu Y., Park K.
Environment-sensitive hydrogels for drugdelivery. Adv Drug Deliv. Rev. 2001;
53:321-39
17. Miyazaki S. et al. Thermally
reversible xyloglucan gels asvehicles for rectal drug delivery. J Control
Release. 1998; 56:75-83.
18. Ramanathan S., Block L.H. The
use of chitosan gels as matricesfor electrically-modulated drug delivery. J
Control Release. 2001; 70:109-23.
19. Tomatsu I.et al. Photoresponsive
hydrogels for biomedical applications.Adv.DrugDeliv.Rev.2011; 63: 1257–1266.
20. Aikawa K.et al. Drug release
from pH-response polyvinylacetaldiethylaminoacetate hydrogel, and application
to nasaldelivery. Int J Pharm.1998; 168:181-8.
21. Guo J.et al. Pharmaceutical
applications of naturally occurring water-soluble polymers. PharmSciandTechnol
Today. 1998;1:254-61.
22. Obaidat AA., Park K.
Characterization of protein release through glucose-sensitive hydrogel
membranes. Biomaterials.1997; 18:801-6.
23. Yamane S., Akiyoshi K. Nanogel-
inorganic hybrid; Synthesis and characterization of polysaccharide calcium
phosphate nanomaterials.Eur. Cells Mater. 2007; 14(3):113
24. Hamidi M. et al. Hydrogel
nanoparticles in drug delivery. Adv.DrugDeliv. Rev. 2008; 60: 1638–1649.
25. Satish CS. et al. Hydrogel as controlled drug delivery
systems: Synthesis, crosslinking,water and drug transport.2006;68(2):133-140.
26. Morishita M. et al.Elucidation
of the mechanism of incorporation of insulin in controlled release system based
on complexation polymer. J. Control.
Release.2002; 81:25-32
27. 27. Zhang K.,X.Y.Wu. Modulated insulin permeation across a glucose-sensitive polymeric
composite membrane. J. Control.
Release.2002; 80:169-178.
28. Liu Ning et al. Radiation
synthesis and characterization of polyDMAEMA hydrogel. Radiation physics and
chemistry.2001; 61:69-73
29. Hennink W.E., Nostrum C.F. The
effect of network charge on the immobilization and release of proteins from chemically
crosslinked dextran hydrogels. Adv.DrugDeliv.
Rev.2002, 54: 13-36.
30. Yamamoto M. Bone regeneration by
transforming growth factor beta 1 released from biodegradable hydrogel. J. Control. Release.2000; 64:133-142.
31. Eagland D., Crowthe, Butler CJ. Complexation between polyoxyethylene and
polymethacrylic acid-the importance of molar mass of polyoxyethylene. Eur.Poly.
J. 1994; 30: 767-773.
32. Ko JA., Park HJ., Hwang J.S.,
Park J.B. and Lee J.S. Preparation of chitosan microparticles intended for
controlled drug delivery.Int. J. Pharm.2002;
249:165-174.
33. Berger J., Reist M., Mayer JM.,
Felt O., Peppas NA. and Gurny R. Structure and interaction in chitosan hydrogel
formed by complexation or aggregation for biomedical application.Eur. J. Pharm. Biopharm.2004; 57: 35-52.
34. Amin
S., Rajabnezhad S., Kohli K. Hydrogels as potential drug delivery systems Scientific Research and
Essay.2009; 3 (11): 1175-1183.
35. Kubo W., Miyazaki S., Attwood D.
Oral sustained delivery ofparacetamol from in situ-gelling gellan and sodium
alginateformulations. Int J Pharm. 2003; 258:55-64.
36. Kazuhiro M., Atsushi N.,
Shinichi F., Katsuaki M., Suong H. and Ikada Y. Evaluation of polyvinyl Alcohol
Hydrogelas a Sustained-Release Vehicle for Rectal Administration of
Indomethacin. J. Pharmaceutical Research.1989; 6(4):442-447.
37. Edsman K., Carlfors J, Petersson
R. Rheological evaluationof poloxamers as an in situ gel for ophthalmic use.
Eur J Pharm Sci.1998; 6:105-12.
38. Polyurethane hydrogel drug
reservoirs foruse in transdermal drug delivery systems,and associated methods
of manufactureand use, US Patent5902603, May 11,1999.
39. Vermani K., Garg S. The scope
and potential of vaginal drug delivery. Pharm SciandTechnol Today.2000;
3:359-64.
40. Ricci EJ., Bentley MV., Farah
M., Bretas R., Marchetti JM. Rheological characterization of Poloxamer 407
lidocaine hydrochloride gels. Eur J Pharm Sci.2002; 17:161-7.
41. Des Noyer JR., McHugh A.J. The
effect of Pluronic on theprotein release kinetics of an injectable drug
delivery system. J Control Release.2008; 6:15-24.
42. Aikawa K., Mitsutake A., Uda H.,
Tanaka S., Shimamura H., Aramaki Y.et al. Drug release from pH-response
polyvinylacetaldiethylaminoacetate hydrogel, and application to nasaldelivery.
Int J Pharm. 1998;168:181-8.
43. Pal K., Banthial AK, Mazumdar DK. Polymeric
hydrogel: Characterization and biomedical application- A mini review. Designed
monomer and polymer.2009;12: 197-200.
44. Lee, Li Z, Huang L. Thermosensitive hydrogel
as a Tgf- beta 1 gene delivery vehicle enhances diabetic wound healing. Pharm
Res. 2003; 20: 1995-2000.
45. N.J.M Lin, Cheung PJ, Wilson DL, Bellamkonda
RV. Sustained in vitro gene delivery from agarose hydrogel prolongs non viral
gene expression in skin. Tissue Eng. 2005, 11: 546-555.
46. Mageed Z, Haider M, Cappello J and H.
Ghandehari. In vitro and in vivo evaluation of recombinant silk –elastin like
hydrogels for cancer gene therapy. J control Release, 2004; 94: 433-445.
47. http://www.lbl.gov/TechTransfer/techs/lbnl2398.html
48. Kobayashi T et.al. Motility and
growthof human bone-marrow mesenchymalstem cells during ex vivo expansion
inautologous serum. J Bone Joint Surg Br, 2005; 87: 1426-1433.
49.
Hoffman AS. Hydrogels for
biomedical applications. Advanced Drug Delivery Reviews. 2002;
54(1): 3-12.
50. Deshpande AA. Intravaginal drug
delivery.Drug Dev. Ind. Pharm.1992;
18:1225-1279
51. http://www.lifecore.com/MoreAboutHyaluronan/CorgelBioHydrogel/tabid/65/Default.aspx.