Author(s): Pankaj Prashar, Pardeep Kumar, Ankita Sood, Anamika Gautam, Harmeet Kaur, Arvinder Kaur, Ruksaar Ebrahim, Shubham Sharma, Indu Melkani, Narendra Kumar Pandey, Bimlesh Kumar

Email(s): bimlesh1Pharm@gmail.com , bimlesh.12474@lpu.co.in

DOI: 10.5958/0974-360X.2020.00931.2   

Address: Pankaj Prashar, Pardeep Kumar, Ankita Sood, Anamika Gautam, Harmeet Kaur, Arvinder Kaur, Ruksaar Ebrahim, Shubham Sharma, Indu Melkani, Narendra Kumar Pandey, Bimlesh Kumar*
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 11,     Year - 2020


ABSTRACT:
Transient receptor potential vanilloid type 1 (TRPV1) is one of the important target sites on which different drugs can act to prevent the pathogenesis of neuropathic pain. Neuropathic pain is a torture and unbearable pain occurs due to damage of somatosensory nervous system. Here in present investigation FDA approved drugs were evaluated to find out its propensity towards action on TRPV1 receptor. 13 FDA approved drugs were selected which were untouched act through TRPV1 receptor. Hence before going to start preclinical work molecular docking was performed to find out its action and binding towards isoform of TRPV1 i.e 2N27, 3J5R. the result of the study indicates that rutin and glimepiride showed better affinity among all selected drugs and rutin was better with respect to glimepiride. The binding site and interactions were also studied supported this study. Hence its can be concluded that Rutin and glimepiride exhibited best possible interaction by antagonizing the effect of TRPV1 receptor so can be consider for the treatment of neuropathic pain.


Cite this article:
Pankaj Prashar, Pardeep Kumar, Ankita Sood, Anamika Gautam, Harmeet Kaur, Arvinder Kaur, Ruksaar Ebrahim, Shubham Sharma, Indu Melkani, Narendra Kumar Pandey, Bimlesh Kumar. Investigation of selected 13 FDA approved drugs for TRPV1 Antagonism using molecular docking: An insight application for the treatment of Neuronal pain. Research J. Pharm. and Tech. 2020; 13(11):5328-5332. doi: 10.5958/0974-360X.2020.00931.2

Cite(Electronic):
Pankaj Prashar, Pardeep Kumar, Ankita Sood, Anamika Gautam, Harmeet Kaur, Arvinder Kaur, Ruksaar Ebrahim, Shubham Sharma, Indu Melkani, Narendra Kumar Pandey, Bimlesh Kumar. Investigation of selected 13 FDA approved drugs for TRPV1 Antagonism using molecular docking: An insight application for the treatment of Neuronal pain. Research J. Pharm. and Tech. 2020; 13(11):5328-5332. doi: 10.5958/0974-360X.2020.00931.2   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-11-46


REFERENCES:
1.    J. Scholz, N.B. Finnerup, N. Attal, Q. Aziz, R. Baron, M.I. Bennett, R. Benoliel, M. Cohen, G. Cruccu, K.D. Davis, The IASP classification of chronic pain for ICD-11: Chronic neuropathic pain, Pain 160(1) (2019) 53-59.
2.    C.J. Woolf, R.J. Mannion, Neuropathic pain: aetiology, symptoms, mechanisms, and management, The lancet 353(9168) (1999) 1959-1964.
3.    A.S. Jaggi, V. Jain, N. Singh, Animal models of neuropathic pain, Fundamental & clinical pharmacology 25(1) (2011) 1-28.
4.    R.K. Khangura, A. Bali, G. Kaur, N. Singh, A.S. Jaggi, Neuropathic pain attenuating effects of perampanel in an experimental model of chronic constriction injury in rats, Biomedicine & Pharmacotherapy 94 (2017) 557-563.
5.    M. Kaur, A. Singh, B. Kumar, S.K. Singh, A. Bhatia, M. Gulati, T. Prakash, P. Bawa, A.H. Malik, Protective effect of co-administration of curcumin and sildenafil in alcohol induced neuropathy in rats, European journal of pharmacology 805 (2017) 58-66.
6.    S.R. Alles, P.A. Smith, Etiology and pharmacology of neuropathic pain, Pharmacological reviews 70(2) (2018) 315-347.
7.    I. Melkani, B. Kumar, S. Panchal, S.K. Singh, A. Singh, M. Gulati, S.B.S. Gill, J. Jyoti, N.K. Pandey, S. Kumar, Comparison of sildenafil, fluoxetine and its co-administration against chronic constriction injury induced neuropathic pain in rats: An influential additive effect, Neurological research  (2019) 1-8.
8.    M. Costigan, A. Moss, A. Latremoliere, C. Johnston, M. Verma-Gandhu, T.A. Herbert, L. Barrett, G.J. Brenner, D. Vardeh, C.J. Woolf, T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity, Journal of Neuroscience 29(46) (2009) 14415-14422.
9.    N. Malek, A. Pajak, N. Kolosowska, M. Kucharczyk, K. Starowicz, The importance of TRPV1-sensitisation factors for the development of neuropathic pain, Molecular and Cellular Neuroscience 65 (2015) 1-10.
10.    M.J. Caterina, A. Leffler, A.B. Malmberg, W. Martin, J. Trafton, K. Petersen-Zeitz, M. Koltzenburg, A. Basbaum, D. Julius, Impaired nociception and pain sensation in mice lacking the capsaicin receptor, science 288(5464) (2000) 306-313.
11.    R. Schicho, W. Florian, I. Liebmann, P. Holzer, I.T. Lippe, Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa, European Journal of Neuroscience 19(7) (2004) 1811-1818.
12.    R. Brito, S. Sheth, D. Mukherjea, L.P. Rybak, V. Ramkumar, TRPV1: a potential drug target for treating various diseases, Cells 3(2) (2014) 517-545.
13.    K. Csekő, B. Beckers, D. Keszthelyi, Z. Helyes, Role of TRPV1 and TRPA1 Ion Channels in Inflammatory Bowel Diseases: Potential Therapeutic Targets?, Pharmaceuticals 12(2) (2019) 48.
14.    D.N. Cortright, A. Szallasi, Biochemical pharmacology of the vanilloid receptor TRPV1, European journal of biochemistry 271(10) (2004) 1814-1819.
15.    E. Palazzo, L. Luongo, V. de Novellis, L. Berrino, F. Rossi, S. Maione, Moving towards supraspinal TRPV1 receptors for chronic pain relief, Molecular pain 6(1) (2010) 66.
16.    S.L. Morales-Lázaro, I. Llorente, F. Sierra-Ramírez, A.E. López-Romero, M. Ortíz-Rentería, B. Serrano-Flores, S.A. Simon, L.D. Islas, T. Rosenbaum, Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch, Nature communications 7 (2016) 13092.
17.    J. Winston, H. Toma, M. Shenoy, P.J. Pasricha, Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons, Pain 89(2-3) (2001) 181-186.
18.    R. Baron, Mechanisms of disease: neuropathic pain—a clinical perspective, Nature clinical practice Neurology 2(2) (2006) 95-106.
19.    J.N. Campbell, R.A. Meyer, Mechanisms of neuropathic pain, Neuron 52(1) (2006) 77-92.
20.    H. Ueda, Molecular mechanisms of neuropathic pain–phenotypic switch and initiation mechanisms, Pharmacology & therapeutics 109(1) (2006) 57-77.
21.    M. Zhuo, G. Wu, L.-J. Wu, Neuronal and microglial mechanisms of neuropathic pain, Molecular brain 4(1) (2011) 31.
22.    M. Nazıroglu, TRPV1 channel: a potential drug target for treating epilepsy, Current neuropharmacology 13(2) (2015) 239-247.
23.    A. Suri, A. Szallasi, The emerging role of TRPV1 in diabetes and obesity, Trends in pharmacological sciences 29(1) (2008) 29-36.
24.    J.E. Meents, L. Neeb, U. Reuter, TRPV1 in migraine pathophysiology, Trends in molecular medicine 16(4) (2010) 153-159.
25.    K.S. Bhadoriya, M.C. Sharma, S.V. Jain, G.S. Raut, J.R. Rananaware, Three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis and molecular docking-based combined in silico rational approach to design potent and novel TRPV1 antagonists, Medicinal Chemistry Research 22(5) (2013) 2312-2327.
26.    S. Forli, R. Huey, M.E. Pique, M.F. Sanner, D.S. Goodsell, A.J. Olson, Computational protein–ligand docking and virtual drug screening with the AutoDock suite, Nature protocols 11(5) (2016) 905.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available