MENU

Author(s): Aliaa Abdelghafar, Nehal Yousef, Momen Askoura

Email(s): momenaskora@yahoo.com

DOI: 10.5958/0974-360X.2020.00977.4   

Address: Aliaa Abdelghafar, Nehal Yousef, Momen Askoura*
Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig, University, Egypt.
*Corresponding Author

Published In:   Volume - 13,      Issue - 11,     Year - 2020


ABSTRACT:
Staphylococcus aureus is an important human pathogen that causes a wide range of infectious conditions both in nosocomial and community settings. Biofilms serve to protect S. aureus from host defenses and antimicrobial agents and therefore play a role in Staphylococcus host pathogenesis. Indeed, biofilm-dwelling bacteria are generally able to tolerate much higher concentrations of antimicrobials than their planktonic counterparts. As a result, biofilm-associated infections are notoriously difficult to eradicate. There is an urgent need for alternative approaches to treat biofilm-related infections. In this review, we present various strategies to combat biofilm-related infections such as small molecules, enzyme therapy and vaccines that weaken structure of bacterial biofilm. However, these promising approaches remain to be validated clinically. Therefore, it is anticipated that these approaches will be eventually developed for treatment of problematic biofilm-related infections notably those are caused by S. aureus.


Cite this article:
Aliaa Abdelghafar, Nehal Yousef, Momen Askoura. Combating Staphylococcus aureus biofilm with Antibiofilm agents as an efficient strategy to control bacterial infection. Research J. Pharm. and Tech. 2020; 13(11):5601-5606. doi: 10.5958/0974-360X.2020.00977.4

Cite(Electronic):
Aliaa Abdelghafar, Nehal Yousef, Momen Askoura. Combating Staphylococcus aureus biofilm with Antibiofilm agents as an efficient strategy to control bacterial infection. Research J. Pharm. and Tech. 2020; 13(11):5601-5606. doi: 10.5958/0974-360X.2020.00977.4   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-11-92


REFERENCES:
1.    Harris LG, Foster S, Richards RG. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. Eur Cell Mater. 2002;4(3):39-60.
2.    Uma mageswari S, George P, Kalyani M. A Study on Coexistence of Panton Valentine Leukocidin Gene from Hospital Acquired Methicillin Resistance Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2019;12(2):508-12.
3.    Aires de Sousa M, Lencastre de H. Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunology and Medical Microbiology. 2004;40(2):101-11.
4.    Rupashri S, Gopinath P. Detection of CNA Gene for the presence of collagen adhesion in clinical strains of Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2016;9(10):1626-8.
5.    Gnanamani A, Hariharan P, Paul-Satyaseela M. Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. Frontiers in Staphylococcus aureus. 2017:4-28.
6.    Al-Nashe AAR, Shakir SL. Genotypic Characterization of Staphylococcus spp. Isolated from the bodies of workers in Units of MRI, CAT, X-Ray, Restaurants and Testing Their ability to Biofilms Formation. Research Journal of Pharmacy and Technology. 2018;11(10):4245-51.
7.    Conlon BP. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells: An investigation of persister cells, their formation and their role in S. aureus disease. Bioessays. 2014;36(10):991-6.
8.    Oliveira M, Bexiga R, Nunes S, Carneiro C, Cavaco L, Bernardo F, et al. Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Veterinary Microbiology. 2006;118(1-2):133-40.
9.    Kadiyala SV, Gopinath P. Detection of icaA gene for intracellular adhesion among clinical isolates of Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2016;9(9):1451-3.
10.    Deepigaa M. Antibacterial resistance of bacteria in biofilms. Research Journal of Pharmacy and Technology. 2017; 10(11): 4019-23.
11.    Shanks RM, Donegan NP, Graber ML, Buckingham SE, Zegans ME, Cheung AL, et al. Heparin stimulates Staphylococcus aureus biofilm formation. Infection and Immunity. 2005;73(8):4596-606.
12.    Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus biofilms. Journal of Bacteriology. 2004;186(6):1838-50.
13.    Kaplan Já. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of Dental Research. 2010; 89(3): 205-18.
14.    Kim S-K, Lee J-H. Biofilm dispersion in Pseudomonas aeruginosa. Journal of Microbiology. 2016;54(2):71-85.
15.    DeLeo FR, Diep BA, Otto M. Host defense and pathogenesis in Staphylococcus aureus infections. Infectious Disease Clinics of North America. 2009;23(1):17-34.
16.    Abbas HA, Serry FM, EL-Masry EM. Biofilms: The Microbial Castle of Resistance. Research Journal of Pharmacy and Technology. 2013;6(1):1-3.
17.    Lewis K. Persister cells. Annual Review of Microbiology. 2010; 64: 357-72.
18.    Kalia VC, Purohit HJ. Quenching the quorum sensing system: potential antibacterial drug targets. Critical Reviews in Microbiology. 2011;37(2):121-40.
19.    Wright JS, Lyon GJ, George EA, Muir TW, Novick RP. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of Staphylococcal quorum sensing. Proceedings of the National Academy of Sciences. 2004; 101(46): 16168-73.
20.    Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nature Reviews Microbiology. 2014;12(1):49-62.
21.    Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB. A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proceedings of the National Academy of Sciences. 2008;105(49):19456-61.
22.    Donlan RM. Biofilms: microbial life on surfaces. Emerging Infectious Diseases. 2002;8(9):881.
23.    Zareen IN, Prakasam G. Oral Biofilms. Research Journal of Pharmacy and Technology. 2016;9(10):1812-4.
24.    Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A. Toxicity and antibacterial assessment of chitosan coated silver nanoparticles on human pathogens and macrophage cells. International Journal of Nanomedicine. 2012;7: 1805.
25.    Nafee N. Nanocarriers against bacterial biofilms: Current status and future perspectives. Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases: Elsevier; 2015. p. 167-89.
26.    Abd FG. Antibacterial Activity of Silver Nanoparticles that extracted by using Staphylococcus aureus. Research Journal of Pharmacy and Technology. 2018;11(10):4215-8.
27.    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346.
28.    Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712-20.
29.    El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environmental Science and Technology. 2011; 45(1): 283-7.
30.    Yun H, Kim JD, Choi HC, Lee CW. Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bulletin of the Korean Chemical Society. 2013; 34(11): 3261-4.
31.    Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environmental Science and Technology. 2010; 44(14): 5649-54.
32.    Hong R, Kang TY, Michels CA, Gadura N. Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol. 2012;78(6):1776-84.
33.    Pacheco RL, Lobo RD, Oliveira MS, Farina EF, Santos CR, Costa SF, et al. Methicillin-resistant Staphylococcus aureus (MRSA) carriage in a dermatology unit. Clinics (Sao Paulo). 2011; 66(12): 2071-7.
34.    Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science. 2004; 275(1): 177-82.
35.    Friedman A, Blecher K, Sanchez D, Tuckman-Vernon C, Gialanella P, Friedman JM, et al. Susceptibility of Gram-positive and-negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence. 2011;2(3):217-21.
36.    Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol. 2009; 75(9): 2973-6.
37.    Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters. 2008; 279(1): 71-6.
38.    Colon G, Ward BC, Webster TJ. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006; 78(3): 595-604.
39.    Umamageswari S, Manipriya B, Kalyani M. Evaluation of antibacterial activity of zinc oxide nanoparticles against biofilm producing methicillin resistant Staphylococcus aureus (MRSA). Research Journal of Pharmacy and Technology. 2018;11(5):1884-8.
40.    Lee J-H, Kim Y-G, Cho MH, Lee J. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological Research. 2014;169(12):888-96.
41.    Opperman TJ, Kwasny SM, Williams JD, Khan AR, Peet NP, Moir DT, et al. Aryl rhodanines specifically inhibit staphylococcal and enterococcal biofilm formation. Antimicrobial Agents and Chemotherapy. 2009;53(10):4357-67.
42.    Weijmer MC, Debets‐Ossenkopp YJ, van de Vondervoort FJ, ter Wee PM. Superior antimicrobial activity of trisodium citrate over heparin for catheter locking. Nephrology Dialysis Transplantation. 2002; 17(12):2189-95.
43.    Abraham NM, Lamlertthon S, Fowler VG, Jefferson KK. Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B. Journal of Medical Microbiology. 2012;61(Pt 8):1062.
44.    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews. 2002;15(2):167-93.
45.    Savage VJ, Chopra I, O'Neill AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrobial Agents and Chemotherapy. 2013;57(4):1968-70.
46.    Davies DG, Marques CN. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. Journal of Bacteriology. 2009;191(5):1393-403.
47.    Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan J, Jabbouri S. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Applied Microbiology and Biotechnology. 2007;75(1):125-32.
48.    Kaplan JB, Ragunath C, Velliyagounder K, Fine DH, Ramasubbu N. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrobial Agents and Chemotherapy. 2004;48(7):2633-6.
49.    Maira-Litran T, Kropec A, Goldmann D, Pier GB. Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine. 2004; 22(7): 872-9.
50.    Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, et al. Synergistic activity of dispersin B and cefamandolenafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrobial Agents and Chemotherapy. 2007;51(8):2733-40.
51.    Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrobial Agents and Chemotherapy. 2003; 47(11):3407-14.
52.    Kokai-Kun JF, Chanturiya T, Mond JJ. Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice. Journal of Antimicrobial Chemotherapy. 2009;64(1):94-100.
53.    Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, et al. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PloS one. 2009;4(6).
54.    Yang L, Liu Y, Wu H, Song Z, Høiby N, Molin S, et al. Combating biofilms. FEMS Immunology and Medical Microbiology. 2012;65(2):146-57.
55.    Sutherland IW, Hughes KA, Skillman LC, Tait K. The interaction of phage and biofilms. FEMS Microbiology Letters. 2004;232(1):1-6.
56.    Son J-S, Lee S-J, Jun SY, Yoon SJ, Kang SH, Paik HR, et al. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Applied Microbiology and Biotechnology. 2010;86(5):1439-49.
57.    Hughes KA, Sutherland IW, Jones MV. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology. 1998;144(11):3039-47.
58.    Pan J, Ren D. Quorum sensing inhibitors: a patent overview. Expert Opinion on Therapeutic Patents. 2009;19(11):1581-601.
59.    Arulmathi R, Sudarmani D, Rajagopal K, Nagarajan T. Screening and Evaluation of Invasive Weeds against Pseudomonas aeruginosa (Mtcc 3541) for Quorum Sensing Interference and its Free Radical Scavenging. Research Journal of Pharmacy and Technology. 2017;10(2):525-8.
60.    Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens. 2008;4(4).
61.    Peschel A, Otto M. Phenol-soluble modulins and staphylococcal infection. Nature Reviews Microbiology. 2013;11(10):667-73.
62.    Kong K-F, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection. International Journal of Medical Microbiology. 2006;296(2-3):133-9.
63.    Kiran MD, Adikesavan NV, Cirioni O, Giacometti A, Silvestri C, Scalise G, et al. Discovery of a quorum-sensing inhibitor of drug-resistant staphylococcal infections by structure-based virtual screening. Molecular Pharmacology. 2008;73(5):1578-86.
64.    Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrobial Agents and Chemotherapy. 2011;55(6):2655-61.
65.    Cirioni O, Giacometti A, Ghiselli R, Dell'Acqua G, Orlando F, Mocchegiani F, et al. RNAIII-inhibiting peptide significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of central venous catheter—associated Staphylococcus aureus infections. Journal of Infectious Diseases. 2006; 193(2): 180-6.
66.    Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA, et al. Infection control by antibody disruption of bacterial quorum sensing signaling. Chemistry and Biology. 2007;14(10):1119-27.
67.    Baker DD, Chu M, Oza U, Rajgarhia V. The value of natural products to future pharmaceutical discovery. Natural Product Reports. 2007; 24(6):1225-44.
68.    Artini M, Papa R, Barbato G, Scoarughi G, Cellini A, Morazzoni P, et al. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds. Bioorganic and Medicinal Chemistry. 2012;20(2):920-6.
69.    LaPlante KL, Sarkisian SA, Woodmansee S, Rowley DC, Seeram NP. Effects of cranberry extracts on growth and biofilm production of Escherichia coli and Staphylococcus species. Phytotherapy Research. 2012;26(9):1371-4.
70.    Payne DE, Martin NR, Parzych KR, Rickard AH, Underwood A, Boles BR. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infection and Immunity. 2013;81(2):496-504.
71.    Kwieciński J, Eick S, Wójcik K. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. International Journal of Antimicrobial Agents. 2009;33(4):343-7.
72.    Park H, Jang C-H, Cho YB, Choi C-H. Antibacterial effect of tea-tree oil on methicillin-resistant Staphylococcus aureus biofilm formation of the tympanostomy tube: an in vitro study. In vivo. 2007;21(6):1027-30.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available