Author(s): Siti Fatmawati, Rizky Dzariyani Laili, MM. Riyaniarti Estri Wuryandari, Erryana Martati, Tri Dewanti Widyaningsih, Muhaimin Rifa’i

Email(s): rifa123@ub.ac.id

DOI: 10.5958/0974-360X.2020.01007.0   

Address: Siti Fatmawati1, Rizky Dzariyani Laili1, MM. Riyaniarti Estri Wuryandari2,3, Erryana Martati1, Tri Dewanti Widyaningsih1, Muhaimin Rifa’i2*
1Department of Food Sciences and Technology, Faculty of Agricultural Technology, University of Brawijaya, Malang, Indonesia.
2Laboratory of Animal Physiology, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, Indonesia.
3Department of Biology, Faculty of Sciences, Technology and Analitical, Institut Ilmu Kesehatan Kediri, Indonesia.
*Corresponding Author

Published In:   Volume - 13,      Issue - 12,     Year - 2020


ABSTRACT:
The aim of this study was to determine the immunomodulator of fermented and non-fermented of ethanolic extract of Moringa oleifera leaves (MOL) on immune responses in Salmonella typhi infected mice. This research employed ten groups of female mice. Group of negative control (NC) received distilled water without bacterial infection, group of positive control (PC) received distilled water and infected by bacteria and six groups of bacteria infected mice that pre-treated with three different doses (14, 42, and 84 mg/kg BW/day) of fermented or non fermented extract of MOL for 21 days. Bacteria are intraperitoneally injected on the day 21th. The administration of extract was continued for one week after injection. The lymphocyte cell isolated from lymph nodes was analyzed with flow cytometry. Statistical analysis was performed using SPSS 17 ANOVA (p<0.05) and followed by Duncan’s test. Mice dosed with fermented or non-fermented extract of MOL (14 and 42 mg/ kg BW/day) showed an increasing number of CD11c + IL-6 and CD8 + IFN-?, CD8 + TNF-a. However, at a dose of 84 mg/kg BW/day those cells number is decreased indicating as immunosuppressant. Fermented ethanolic extract of MOL is more effective as immunomodulatory agent as compared to non-fermented extract of MOL.


Cite this article:
Siti Fatmawati, Rizky Dzariyani Laili, MM. Riyaniarti Estri Wuryandari, Erryana Martati, Tri Dewanti Widyaningsih, Muhaimin Rifa’i. Fermented Ethanolic Extract of Moringa oleifera leaves with Lactobacillus plantarum FNCC 0137 as Immunomodulators on Salmonella typhi-Infected Mice. Research J. Pharm. and Tech. 2020; 13(12):.5777-5782. doi: 10.5958/0974-360X.2020.01007.0

Cite(Electronic):
Siti Fatmawati, Rizky Dzariyani Laili, MM. Riyaniarti Estri Wuryandari, Erryana Martati, Tri Dewanti Widyaningsih, Muhaimin Rifa’i. Fermented Ethanolic Extract of Moringa oleifera leaves with Lactobacillus plantarum FNCC 0137 as Immunomodulators on Salmonella typhi-Infected Mice. Research J. Pharm. and Tech. 2020; 13(12):.5777-5782. doi: 10.5958/0974-360X.2020.01007.0   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-12-22


REFFERENCES:
1.    Hefni M, Rifa’i M, Widodo. Aktivitas imunomodulator ekstrak daun Moringa oleifera lam terhadap populasi hematopoetic stem cell pada mencit yang diinfeksi Salmonella typhi. Jurnal El-Hayah. 2013; (3):61-69.
2.    Baratawidjaya KG, Rengganis I. Imunologi Dasar. Eleventh edition. Jakarta: Publisher: Health Science Faculty of Indonesia University. 2014.
3.    Abbas KA, Lichman AH, Pillai S. Basic immunology 3e updated edition. Pub Philadelphia: Elsevier. 2016; 103-107, 113-121.
4.    Swaroop VK, Mukherjee A, Sharma S, Jabez OW. Isolation and characterization of drug resistant Salmonella typhi from sewage water. Research J. Pharm. and Tech. 2015; 8 (2): 167-171
5.    Kumar Y, Sharma A, Mani KR. High level of resistance to nalidixic acid in Salmonella entericserovar typhi in central india. J Infect Dev Ctries. 2010; (3):467-459.
6.    Lim TK. Edible medicinal and non-medicinal plants: Volume 3, Fruits. E-book 2012.
7.    Nikita Dhimmar, Nisha M. Patel, Vipul Gajera, Vijay Lambole. Pharmacological Activities of Moringa oleifera: An Overview. Research Journal of Pharmacy and Technology. 2015; 8 (4): 476-480.
8.    Charde RM, Charde MS, Fulzele SV, Satturwar PM, Kasture AV, Joshi SB. Evaluation of Ethanolic Extract of Moringa Oleifera for Wound Healing, Anti-inflammatory and Antioxidant Activities on Rats. Research Journal of Pharmacy and Technology. 2011; 4(2): 254-258.
9.    Desai SA, Darji D , Makwana M. In-Vitro Anti Bacterial Activity of Water Extract of Moringa oleifera Leaf Stalk. Research Journal of Pharmacognosy and Phytochemistry. 2011; 3 (6); 297-299.
10.    Lutfiyah F. Potensi gizi daun kelor (Moringa oleifera) Nusa Tenggara Barat. Media Bina Ilmiah. 2012;6 (2):42-50.
11.    Larsen CS, Knudsen, TE, Johsen, H.E. The role of calcium in stimulation of activated T lymphocytes with interleukin 2. Scand J. Immunol. 1986 ;(24) 689-697.
12.    Zelante T, Fric J, Wong AYW., Ricciardi-Castagnoli, P. 2012. Interleukin-2 production by dendritic cells and its immuno-regulatory functions. IL-2 as a novel innate cytokine. Mini review article of frontiers in Immunology. 2012; 3 (161): 1-5.
13.    Fathir A, Rifa’i M, Widodo. Aktivitas ekstrak daun kelor terhadap sel-t  helperand sel-t  sitotoksik pada mencit yang diinfeksi  Salmonella thypi. Jurnal Veteriner. 2014;(15):114-122.
14.    Reale A, Konietzny U, Sorrentino CRE, Greiner R. Importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J. Agric. Food Chem. 2007; (55): 2993-2997.
15.    Vanajakshi V, Vijayendra SVN, Varadaraj MC, Venkateswaran G, Agrawal R. Optimization of a probiotic beverage based on Moringa leaves and beetroot. LWT - Food Science and Technology. 2015; 63(2): 1268-1273.
16.    Mohanasrinivasan. V, Poornima S, Nivetha. A. Anti-Bacterial protein extracted from Lactobacillus plantarum (VITSE07) targeting food borne pathogens. Research Journal of Pharmacy and Technology. 2018; 11(4): 1343-1350.
17.    Shalini Singh, Sujata Das. Evaluation of Market Curd for Sanitary Quality and Bacteriocin-Producing Lactic acid Bacteria for Potential Application as a Natural, Healthy Food Preservative. Research Journal of Pharmacy and Technology. 2017; 10(4): 1029-1033.
18.    Thierry NN, Léopold TN, Didier M, Moses FMC. Effect of pure culture fermentation on biochemical composition of Moringa oleifera Lam leaves powders. Journal of Food and Nutrition Sciences. 2013; (4):851-859.
19.    Bogovič-Matijašić B, Rogelj I. Bacteriocins of probiotics and enteric cytoprotection. E-book. Probiotic Bacteria and Enteric Infections. 2014.
20.    Mohamed FAE, Salama HH, El-Sayed SM, El-Sayed HS, Zahran, HA. Utilization of natural antimicrobial and antioxiandt of Moringa oleifera leaves extract in manufacture of cream cheese. Journal of Biological Sciences. 2018;18 (2): 92-106.
21.    Doughari JH, Pukuma, MS, De N. Antibacterial effects of Balanites aegyptiaca L. Drel and Moringa oleifera Lam on Salmonella typhi. African Journal of Biotechnology. 2007; (19):2212-2215.
22.    Nirina HA, Miora R, Vincent P, Abel H, Fabienne R,  Louisette R.  Phytochemical composition and antioxiandt activity of fermented Moringa oleifera leaf powder. European Journal of Nutrition & Food Safety. 2007; 7(1): 77-83.
23.    Fonseca F, Cenard S, Passot S. Freeze-Drying of lactic acid bacteria. e-book of cryopreservation and freeze-drying protocols. Methods in Molecular Biology chapter 24. 2015.
24.    Chamjangali MA, Keley V, Bagherian G. Kinetic spectrophotometric method for the determination of trace amounts of oxalate by an activation effect, analytical sciences. The Japan Society for Analitycal Chemistry. 2006 (2):333-336.
25.    Fuadah Y, Djati S, Widyarti S.  Bioactivity of Sauropus androgynus and Elephantopus scaber to CD4+IL2+ and CD4+IL4+ T Cells Modulation in Balb/c Pregnant Mice Model of Typhoid. J.Exp. Life Sci. 2015;(5). (In Indonesian).
26.    Gibson RS, Perlas L, Hotz C. Improving the bioavailability of nutrients in plant foods at the household level. Proceedings of the Nutrition Society. 2006; (65):160–168.
27.    Somvanshi A, Patel A, Jalgaonwala R. Nutritional and Antinutritional Properties of Selected Fermented Foods. Asian J. Research Chem. 2017; 10(4):531-540.
28.     Turroni S, Vitali B, Bendazzoli C, Candela M, Gotti R, Federici F, Pirovano F, Brigidi P. Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. Journal of Applied Microbiology. 2007; 103:1600–1609.
29.    Azcarate-Peril MA, Bruno-Ba´rcena JM, Hassan HM, Klaenhammer TR. Transcriptional and functional analysis of Oxalyl-Coenzyme A (CoA) Decarboxylase and Formyl-CoA transferase genes from Lactobacillus acidophilus. Applied And Environmental Microbiology. 2006; 72 (3); 1891–1899.
30.    Sukhbir Lal Khokra, Bharat Parashar, Hitesh Kumar Dhamija, Manju Bala. Immunomodulators: Immune System Modifiers. Research Journal of Pharmacy and Technology. 2012; 5(2): 169-174.
31.    Svedruzˇic´a D, Jo´nsson S, Toyota CG, Reinhardt LA, Ricagnoc S, Lindqvist Y, Richardsa NGJ. The enzymes of oxalate metabolism: unexpected structures and mechanisms. Archives of Biochemistry and Biophysics. 2005; 433:176–192.
32.    Ayed L, Hamdi M. Culture conditions of tannase production by Lactobacillus plantarum. Journal of Biotechnology Letters. 2002; 24: 1763–1765.
33.    Granucci F, Feau S, Angeli V, Trottein F., Ricciardi-Castagnoli P.Early IL-2 production by mouse dendritic cells is the result of microbial-induced priming. J Immunol. 2003; 170:5075-5081.
34.    Patel R. Sad S. Transcription factor Batf3 is important for development of CD8+ T-cell response against a phagosomal bacterium regardless of the location of antigen. J. Immunology and Cell Biology. 2015; 1–10.
35.    Laili, RD, Martanti E, Rifa’i M. Immunomodulator Effect of Moringa oleifera Leaves Fermented by Lactobacillus plantarum FNCC 0137 on Salmonella typhi Infected Balb/C Mice. Journal of Pharmacy and Technology. 2019; 12 (8): 3595-3601
36.    Castillo NA, Perdigon G, Moreno LA. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar typhimurium infection in mice. BMC Microbiol. 2011; 11(1), p.177.
37.    Dijsselbloem N, Goriely S, Albarani V, Gerlo S, Francoz S, Marine J, Goldman M, Haegeman G, Berghe WVA. Critical role for p53 in the control of NF-kB dependent gene expression in TLR4-stimulated dendritic cells exposed to genistein. The Journal of Immunology. 2007; (178): 5048-5057.
38.    Macian, Fernando. NFAT Proteins: Key Regulators Of T-Cell Development And Function. Nature Journal of Immunology. 2005; (5): 472-484.
39.    Lewis RS. Calcium oscillations in t-cells: mechanisms and consequences for gene expression. J. Biochemical Society Transactions. 2003; 31 (5): 925-929.
40.    Huang R, Yu, Y, Cheng W, Yang CO, Fu E,  Chu C. Immunosuppressive effect of quercetin on dendritic cell activation and function. The Journal of Immunology. 2010; (184):6815-6821.
41.    Rao YK, Fang ASB, Tzeng Y. Inhibitory effects of the flavonoids isolated from Waltheria indica on the production of NO, TNF-a and IL-12 in activated macrophages. J. Biol. Pharm. Bull. 2005; (5): 912-915.
42.    Kumazawa Y, Kawaguchi K, Takimoto H. Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor. J.Current Pharmaceutical Design. 2006; (12): 4271-4279.
43.    Ramiro-Puig E, Castell M. Cocoa: Antioxiandt and immunomodulator. British Journal of Nutrition. 2009; (101):931–940.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available