Author(s):
Agnes Batmomolin, Husnul Khotimah, Ahsan Ahsan, I WayanArsana Wiyasa, Sanarto Santoso.
Email(s):
agnesbat4@gmail.com
DOI:
10.5958/0974-360X.2020.01016.1
Address:
Agnes Batmomolin1.2*, Husnul Khotimah1.3, Ahsan Ahsan1.4, I WayanArsana Wiyasa1.5, Sanarto Santoso1.6
1Doctoral Program of Medical Science, Faculty of Medicine Universitas, Brawijaya, Indonesia.
2.Moluccas Polytechnic of Health, Jakarta, Indonesia.
3Department of Pharmacology, Faculty of Medicine Universitas, Brawijaya, Indonesia.
4Nursing Study Program, Faculty of Medicine Universitas, Brawijaya, Indonesia.
5Department of Obstetrics and Gynecology, Saiful Anwar Public Hospital, Malang, Indonesia.
6Department of Microbiology, Faculty of Medicine Universitas, Brawijaya, Indonesia.
*Corresponding Author
Published In:
Volume - 13,
Issue - 12,
Year - 2020
ABSTRACT:
Preeclampsia (PE) is special multisystem disorder that due deficient spiral artery remodeling and placental hypoxia with main symptom is hypertension and proteinuria. Deficient spiral artery remodeling can reduce blood flow from maternal to the fetus, therefore occur intrauterine growth restriction and low birth weight babies. Moringa oleifera leaves (MOL) are rich of nutrients, also can be used for medicine. The aim of this study is to evaluate effect of main compounds of ethanol extract MOL to improve IUGR by evaluate rat pups weight and predict the interaction of the main compound of MOL namely Quercetin and Kaempferol on hypoxia and angiogenesis as an approach to prevent preeclampsia. The methods of this research was experimental post-test only control group design and web based: PubChem was used to identify the compound structure and format data SMILE, Swiss target prediction for proteins target prediction, PASS SERVER to predict biological activity of the compounds, while STITCH was used to predict the interaction of compounds with protein target. The result showed that ethanol extract of MOL with the main compound quercetin and kaempferol improve IUGR that shown by increase rat pups weight in administered ethanol extract of MOL group compared to preeclampsia group, MOL extract have the same effect to prevent decrease rat pups weight. In predict main compounds MOL, both of compounds have good biological activity (pa?0.7), target protein prediction = 0.9 to maintain the function of endothelial blood vessel and inhibit hypoxia. Both of compounds work synergistically on hypoxia and angiogenesis through activation and inhibition of HIF-1A.
Cite this article:
Agnes Batmomolin, Husnul Khotimah, Ahsan Ahsan, I WayanArsana Wiyasa, Sanarto Santoso. Effects of Quercetin and Kaempferol (Main Compound of Moringa oleifera Leaves) improve IUGR through Decreased Hypoxia. Research J. Pharm. and Tech. 2020; 13(12):5831-5836. doi: 10.5958/0974-360X.2020.01016.1
Cite(Electronic):
Agnes Batmomolin, Husnul Khotimah, Ahsan Ahsan, I WayanArsana Wiyasa, Sanarto Santoso. Effects of Quercetin and Kaempferol (Main Compound of Moringa oleifera Leaves) improve IUGR through Decreased Hypoxia. Research J. Pharm. and Tech. 2020; 13(12):5831-5836. doi: 10.5958/0974-360X.2020.01016.1 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-12-31
REFERENCES:
1. Matsubara K. Hypoxia in the pathogenesis of preeclampsia. Hypertens Res Pregnancy. 2017; 5(2):46-51. doi:10.14390/jsshp.HRP2017-014
2. Lin S, Leonard D, Co MAM, et al. Pre-eclampsia has an adverse impact on maternal and fetal health. Transl Res. 2015; 165(4):449-463. doi:10.1016/j.trsl.2014.10.006
3. Wang H, Guo M, Liu F, et al. Role of IL-17 Variants in Preeclampsia in Chinese Han Women. PLoS One. 2015; 10(10):e0140118. doi:10.1371/journal.pone.0140118
4. Mary Lucita (Agasa. K. S). A Study of the Socio-Demographic and Maternal Factors Affecting Spontaneous Abortion. Int. J. Adv. Nur. Management 2(3): July-Sept., 2014; Page 159-161.
5. Rayapu Vasundhara, Jonnalagadda Miryani, Koramutla Dakshayani. Nursing Management of a Client with Eclampsia. Int. J. of Advances in Nur. Management. 2019; 7(3): 289-293
6. Eviston DP, Minasyan A, Mann KP, Peek MJ, Nanan RKH. Altered Fetal Head Growth in Preeclampsia: A Retrospective Cohort Proof-Of-Concept Study. Front Pediatr. 2015; 3(October):1-5. doi:10.3389/fped.2015.00083
7. Irwinda R, Surya R, Nembo LF. Impact of pregnancy-induced hypertension on fetal growth. Med J Indones. 2016; 25(2):104-111. doi:10.13181/mji.v25i2.1381
8. Singh AC, Rana SS. Fetal outcome in hypertensive disorders of pregnancy. Med J Shree Birendra Hosp. 2013; 12(1):8-10. doi:10.1016/0002-9378(82)90727-X
9. Sue BH, Alexander BT. Lingking IUGR and Blood Pressure: Insight into the Human Origins of Cardiovascular Disease. Circulation. 2013; 128(20):2179-2180. doi:10.1097/00008480-200304000-00005
10. Verma S, Pillay P, Naicker T, Moodley J, Mackraj I. Placental hypoxia inducible factor -1α and CHOP immuno-histochemical expression relative to maternal circulatory syncytiotrophoblast micro-vesicles in preeclamptic and normotensive pregnancies. Eur J Obstet Gynecol Reprod Biol. 2018; 220:18-24. doi:10.1016/j.ejogrb.2017.11.004
11. George EM, Garrett MR, Granger JP. Placental ischemia induces changes in gene expression in chorionic tissue. 2014:253-261. doi:10.1007/s00335-014-9505-3
12. Nagai A, Sado T, Naruse K, et al. Antiangiogenic-induced hypertension: The molecular basis of signaling network. Gynecol Obstet Invest. 2012; 73(2):89-98. doi:10.1159/000334458
13. Llurba E, Crispi F, Verlohren S. Update on the pathophysiological implications and clinical role of angiogenic factors in pregnancy. Fetal Diagn Ther. 2015; 37(2):81-92. doi:10.1159/000368605
14. Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: Updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol. 2016; 11(6):1102-1113. doi:10.2215/CJN.12081115
15. Uzan J, Carbonnel M, Piconne O, Asmar R, Ayoubi J-M. Preeclampsia: pathophysiology, diagnosis, and Management. Pre-eclampsia. 2011; 10(4):202-211. doi:10.1016/j.cpem.2009.11.002
16. Bezerra Maia e Holanda Moura S, Marques Lopes L, Murthi P, Da Silva Costa F. Prevention of preeclampsia. J Pregnancy. 2012; 2012. doi:10.1155/2012/435090
17. Ugwu OPC, Nwodo OFC, Joshua PE, Bawa A, Ossai EC, Odo CE. Phytochemical and Acute Toxicity Studies. Int J Life Sci Biotechnol Pharma Res. 2013; 2(2):66-71.
18. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int J Mol Sci. 2015; 16(6):12791-12835. doi:10.3390/ijms160612791
19. Qureshi Md. Shamim, Patel Jitendra, Venkateshwar Reddy A, Syed Safiullah, P Mohapatra. Phytochemicals and Pharmacological Activities of Moringa oleifera Lam. Research J. Pharmacology and Pharmacodynamics. 2010; 2(2):183-186.
20. Coppin JP, Xu Y, Chen H, et al. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J Funct Foods. 2013; 5(4):1892-1899. doi:10.1016/j.jff.2013.09.010
21. Ashish Vaishnav, Anish Chandy, Deenanath Jhade, Sudhish Rai. Pharmacognostical and Preliminary Phytochemical Studies on Moringa olifera Leaves. Research J. Pharmacognosy and Phytochemistry 2011; 3(6): 272-274.
22. Alimuddin S, Bonde VN. To Evaluate The Anti-Inflammatory Activity of Ethanolic Leaf Extract of Moringan Oleifera plant in Albin Wistar Rats. Eur J Pharm Med Res. 2016; 3(12):295-297.
23. Charde RM, Charde MS, Fulzele SV, Satturwar PM, Kasture AV, Joshi SB. Evaluation of Ethanolic Extract of Moringa Oleifera for Wound Healing, Anti-inflammatory and Antioxidant Activities on Rats. Research J. Pharm. and Tech. 4(2): February 2011; 254-258.
24. J. Krishnaveni, T. Ananthi. Hepatoprotective Effect of Moringa oleifera in Isoniazid Induced Rats. Research J. Pharm. and Tech. 4(12): Dec. 2011; 1901-1903.
25. Nurul Huda Md. Masu, Kaiser Hamid, Abu Hasanat Zulfiker, Kamal Hossain, Kaniz Fatima Urmi. In vitro Antioxidant Activities of Different parts of the Plant Moringa oleifera Lam. Research J. Pharm. and Tech. 5(12): Dec. 2012; Page 1532-1537.
26. A. Thennarasu. Quercetin in Health and Disease. Research J. Pharm. and Tech. 6(12): Dec. 2013; Page 1397-1399.
27. Settler U, Egert S, Bosy-westphal A, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype : a double-blinded, placebo-controlled cross-over study British Journal of Nutri. 2009; (2009):1065-1074. doi:10.1017/S0007114509359127
28. Yu S, Long H, Lyu Q, et al. Protective effect of quercetin on the development of preimplantation mouse embryos against hydrogen peroxide-induced oxidative injury. PLoS One. 2014; 9(2):e89520. doi:10.1371/journal.pone.0089520
29. Chelliah DA. Biological Activity Prediction of an Ethno Medicinal Plant Cinnamomum camphora Through Bio-informatics. Ethnobot Leafl. 2008; 12:181-190. http://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?article=1056andcontext=ebl.
30. Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016; 44(D1):D380-D384. doi:10.1093/nar/gkv1277
31. Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2018; 218(2):S745-S761. doi:10.1016/j.ajog.2017.11.577
32. Ashwini Shenai. Hormones Influencing Growth of the Fetus: A Review. Research J. Pharm. and Tech. 8(6): June, 2015; Page 749-751.
33. Amaral LM, Wallace K, Owens M, LaMarca B. Pathophysiology and Current Clinical Management of Preeclampsia. Curr Hypertens Rep. 2017; 19(8):19-21. doi:10.1007/s11906-017-0757-7
34. Samrithi Yuvaraj, A. Jothi Priya, Nirisha Sriram. Effect of Non-Steroidal Anti Inflammatory Drugs in Pregnancy: A Systematic Review. Research J. Pharm. and Tech. 8(6): June, 2015; Page 787-791.
35. Groom KM, David AL. The role of aspirin, heparin, and other interventions in the prevention and treatment of fetal growth restriction. Am J Obstet Gynecol. 2018; 218(2):S829-S840. doi:10.1016/j.ajog.2017.11.565
36. Cui Y, Zhu B, Zheng F. Low-dose aspirin at ≤16 weeks of gestation for preventing preeclampsia and its maternal and neonatal adverse outcomes: A systematic review and meta-analysis. Exp Ther Med. 2018; 15(5):4361-4369. doi:10.3892/etm.2018.5972
37. Marrufo T, Nazzaro F, Mancini E, et al. Chemical composition and biological activity of the essential oil from leaves of Moringa oleifera Lam. cultivated in Mozambique. Molecules. 2013; 18(9):10989-11000. doi:10.3390/molecules180910989
38. Akhilesh M, Mahalingam V, Nalliah S, Ali RM, Ganesalingam M, Haleagrahara N. Participation of hypoxia-inducible factor-1?? in the pathogenesis of preeclampsia-related placental ischemia and its potential as a marker for preeclampsia. Biomarkers Genomic Med. 2014; 6(3):121-125. doi:10.1016/j.bgm.2014.04.002
39. Takayuki I, Wei W, F PN, et al. Hipoxia independent up-regulation of placenta HIF-1A Contributes To the Pathogenesis of Preeclampsia. Hypertension. 2015; 65(6):1307-131565. doi:10.1016/j.ajog.2014.01.024
40. Mendes SO, Santos M Dos, Peterle GT, et al. HIF-1alpha expression profile in intratumoral and peritumoral inflammatory cells as a prognostic marker for squamous cell carcinoma of the oral cavity. PLoS One. 2014; 9(1):15-16. doi:10.1371/journal.pone.0084923
41. Naljayan M V., Karumanchi SA. New Developments in the Pathogenesis of Preeclampsia. Adv Chronic Kidney Dis. 2013; 20(3):265-270. doi:10.1053/j.ackd.2013.02.003
42. Lai H, Liu H. Expression and meaning analysis of HIF-1α and HSP70 in preeclamptic placenta. Biomed Res. 2018; 29(6):1240-1243.
43. Pandey AK, Shukla SC, Bhattacharya P, Patnaik R. RESEARCH ARTICLE A possible therapeutic potential of quercetin through inhibition of µ-calpain in hypoxia induced neuronal injury : a molecular dynamics simulation study. 2016; 11(8):1247-1253. doi:10.4103/1673-5374.189186
44. Imran M, Salehi B, Sharifi-rad J, et al. Kaempferol : A Key Emphasis to Its. 2019:1-16.
45. Guo YI, Bruno RS. Vasoprotective activities of quercetin. Agro Food Ind Hi Tech. 2011; 22(1):16-19.
46. Monteiro MMO, França-silva MS, Alves NFB, Porpino SKP, Braga VA. Quercetin Improves Baroreflex Sensitivity in Spontaneously Hypertensive Rats. 2012:12997-13008. doi:10.3390/molecules171112997
47. Chen X, Zhang L, Wu G, Li H, Zhang F, Xu X. Kaempferol attenuates angiotesin ii-induced vascular fibrosis involving the jnk and ERK1/2 pathways. Int J Clin Exp Med. 2016; 9(2):2407-2414.