Author(s): Amir Alhaj Sakur, Hashem A. Dabbeet, Imad Noureldin

Email(s): profsakur@gmail.com

DOI: 10.5958/0974-360X.2020.01041.0   

Address: Amir Alhaj Sakur*, Hashem A. Dabbeet, Imad Noureldin
Department of Analytical and Food Chemistry, Faculty of Pharmacy, Aleppo University, Syria.
*Corresponding Author

Published In:   Volume - 13,      Issue - 12,     Year - 2020


ABSTRACT:
In this work we investigated the ability of using polystyrene (PST) as a matrix for Drug Selective Membrane, also incorporating two ion pairs in the same selective electrode's membrane, and so constructing an electrode sensitive to either Ciprofloxacin (CFX) or Tinidazole (TZL) according to the standard filling solution of the electrode, subsequently determine the two drugs CFX and TZL Simultaneously in their combined solutions, 3 polystyrene membrane drug selective sensors were constructed for CFX and TZL analysis intended. The electro active materials were CFX- phosphomolybdic acid (CFX-PMA), TZL- phosphomolybdic acid (TZL-PMA) and a composition of CFX-PMA+TZL-PMA. The characterization and analytical properties were determined, and the casting selective membranes of the selective electrodes were plasticized by di-n-butyl phthalate (DBP). Each of the assembled electrodes have internal reference Ag/AgCl electrode. Also, the gathered sensors have external reference Ag/AgCl electrode. The developed sensors showed near NERNSTIAN response for ion pair percentages of 7% for both CFX-PMA, TZL-PMA. The electrodes showed a rapid responses of 11-13 sec for a period of 16-17 days, with no changes that have meaningful results in the electrodes parameters. The suggested sensors have a measurement pH ranges 2.0-6.0 for CFX, and 2.0-5.0 for TZL without using any buffer. The sensors were used as indicator electrodes for direct determination of CFX and TZL in pharmaceutical preparations with mean relative standard deviation less than 2% that indicating good precision, as well as in pure form solutions with average recovery of 99.97%, 100.02% and 99.93% (CFX) or 99.97% (TZL) and a mean relative standard deviation of 0.03%, 0.05% and 0.11% (CFX) or 0.03% (TZL)% at 1 mM (367.8 µg/mL CFX, or 247.3 µg/mL TZL) for CFX-PMA, TZL-PMA, and CFX-PMA+TZL-PMA sensors respectively.


Cite this article:
Amir Alhaj Sakur, Hashem A. Dabbeet, Imad Noureldin. Novel Drug Selective polystyrene membrane for Simultaneous Potentiometric Determination of Ciprofloxacin and Tinidazole in pure form and Pharmaceutical Formulations. Research J. Pharm. and Tech. 2020; 13(12):5963-5971. doi: 10.5958/0974-360X.2020.01041.0

Cite(Electronic):
Amir Alhaj Sakur, Hashem A. Dabbeet, Imad Noureldin. Novel Drug Selective polystyrene membrane for Simultaneous Potentiometric Determination of Ciprofloxacin and Tinidazole in pure form and Pharmaceutical Formulations. Research J. Pharm. and Tech. 2020; 13(12):5963-5971. doi: 10.5958/0974-360X.2020.01041.0   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-12-56


REFERENCES:
1.    National Center for Biotechnology Information. PubChem Database. Ciprofloxacin hydrochloride, CID=62999, https://pubchem.ncbi.nlm.nih.gov/compound/Ciprofloxacin-hydrochloride (accessed on June 21, 2019).
2.    E.C. Johannsen, M.S. Sabatine, Pharm Cards: Review Cards for Medical Students, Fourth Edition (Wolters Kluwer, Lippincott Williams & Wilkins, 2010).
3.    National Center for Biotechnology Information. PubChem Database. Tinidazole, CID=5479, https://pubchem.ncbi. nlm.nih.gov/compound/Tinidazole (accessed on June 21, 2019).
4.    G. Kawas, M. Marouf, O. Mansour, A.A. Sakur, Analytical Methods of Ciprofloxacin and its Combinations Review, Research Journal of Pharmacy and Technology, 2018; 11(5): 2139-2148.
5.    E.C.L. Cazedey, H.R.N. Salgado, Spectrophotometric Determination of Ciprofloxacin Hydrochloride in Ophthalmic Solution, Advances in Analytical Chemistry, 2012; 2(6): 74-79.
6.    R.H. Obaydo, A.A. Sakur, Fingerprint Spectrophotometric Methods for the Determination of Co-Formulated Otic Solution of Ciprofloxacin and Fluocinolone Acetonide in Their Challengeable Ratio, Journal of Analytical Methods in Chemistryl, 2019; vol. 2019, 14 pages.
7.    R.H. Obaydo, A.A. Sakur, Spectrophotometric strategies for the analysis of binary combinations with minor component based on isoabsorptive point's leveling effect: An application on ciprofloxacin and fluocinolone acetonide in their recently delivered co-formulation, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019; vol. 219: 186-194.
8.    R.H. Obaydo, A.A. Sakur, A Green Analytical method Using algorithm (PCCA) for extracting components’ contribution from severely overlapped Spectral Signals in pharmaceutical mixtures, Research Journal of Pharmacy and Technology, 2019; 12(9): 4332-4338.
9.    R. Kharat, S. Jadhav, D. Tamboli, A. Tamboli, Estimation of Ciprofloxacin Hydrochloride in Bulk and Formulation by Derivative UV-Spectrophotometric Methods, International Journal of Advances in Scientific Research, 2015; 1(03): 137-144.
10.    R. Kazan, H. Mandil, A.A. Sakur, Spectrophotometric Determination of Ciprofloxacin in Pharmaceutical Formalations Using Bromocresol Green, R. J. of Aleppo Univ. Science Series, 2008; vol 62: 143-160.
11.    R. Kazan, H. Mandil, A.A. Sakur, Spectroflourimetric Determination of Ciprofloxacin and Norfloxacin, Arab Journal of pharmaceutical Sciences, 2009; vol 4: 93-101.
12.    X. Li, Q. Cao, F. Wang, Determination of ciprofloxacin hydrochloride in pharmaceutical preparation and biological fluid by Rayleigh light scattering technique, Wuhan University Journal of Natural Sciences, 2009; Volume 14, Issue 1, pp 70–74.
13.    Xu-ZhiZhang et al., Simple and cost-effective determination of ciprofloxacin hydrochloride by electrical micro-titration, Chinese Chemical Letters, 2017; Volume 28, Issue 7: 1406-1412.
14.    Michalska et al., Determination of ciprofloxacin and its impurities by capillary zone electrophoresis, Journal of Chromatography A, 2004; Volume 1051, Issues 1–2, Pages 267-272.
15.    H. Mandil, A.A. Sakur, B. Nasser, Potentiometric determination of gatifloxacin & ciprofloxacin in pharmaceutical formulations, International Journal of Pharmacy and Pharmaceutical Sciences, 2012; 4(4): 537-542.
16.    A.A. Sakur, H.A. Dabbeet, I. Noureldin, Novel Drug Selective Sensors for Simultaneous Potentiometric Determination of both Ciprofloxacin and Metronidazole in Pure form and Pharmaceutical Formulations, Research J. Pharm. and Tech, 2019; 12(7): 3377-3384.
17.    P.     N. S Pai, G. K. Rao, B. Srinivas, S. Puranik, RPLC Determination of Tinidazole and Diloxanide Furoate in Tablets, Indian journal of pharmaceutical sciences, 2008; 70(5): 670-672.
18.    O. I. ZheltvaiI, I. Zheltvai, V. V. Spinul, V. P. Antonovich, Spectrophotometry determination of metronidazole and tinidazole by their complexation with copper (II), Journal of Analytical Chemistry, 2013; 68(7): 600–605.
19.    P. Nagaraja, KR. Sunitha, RA. Vasantha, HS. Yathirajan, Spectrophotometric determination of metronidazole and tinidazole in pharmaceutical preparations, Journal of Pharmaceutical and Biomedical Analysis, 2002; 28(3-4): 527-535.
20.    M. Slamnik, Determination of Tinidazole in Tablets by dc Polarography, Journal of pharmaceutical sciences, 1976; 65(5): 736–737.
21.    Y. Nikodimos, B. Hagos, Electrochemical Behaviour of Tinidazole at 1,4-Benzoquinone Modified Carbon Paste Electrode and Its Direct Determination in Pharmaceutical Tablets and Urine by Differential Pulse Voltammetry, Journal of Analytical Methods in Chemistry, 2017; vol. 2017, Article ID 8518707, 10 pages.
22.    T. Sirisha, Simultaneous Determination of Ciprofloxacin and Tinidazole in Tablet Dosage Form by Reverse Phase High Performance Liquid Chromatography, Tropical Journal of Pharmaceutical Research, 2014; 13(6): 981-987.
23.    V.S. Salvi, P.A. Sathe, P.V. Rege, Determination of Tinidazole and Ciprofloxacin Hydrochloride in Single Formulation Tablet using Differential Pulse Polarography, Journal of Analytical & Bioanalytical Techniques, 2010; 1(3): 1-3.
24.    A.A. Sakur, S. Bassmajei, H.A. Dabbeet, Novel Moxifloxacin Ion Selective Electrodes for Potentiometric Determination of Moxifloxacin in Pure Form and Pharmaceutical Formulations, International Journal of Academic Scientific Research, 2015; 3(4): 66-75.
25.    M. Haroun, D. Nashed, A.A. Sakur, New electrochemical methods for the determination of Prasugrel using drug selective membranes, International Journal of Ac ademic Scientific Research, 2017; 5(3): 30-36.
26.    O. Mansour, D. Nashed, A.A. Sakur, Determination of Clopidogrelbisulphate using Drug Selective Membranes, Research Journal of Pharmacy and Technology, 2018; 11(5): 2017-2021.
27.    A.A. Sakur, D. Nashed, M. Haroun, I. Noureldin, Determination of Prasugrel Hydrochloride in Bulk and Pharmaceutical Formulation Using New Ion Selective Electrodes, Research Journal of Pharmacy and Technology, 2018; 11(2): 631-636.
28.    H.T.S. Britton, R.A. Robinson, Universal buffer solutions and the dissociation constant of veronal, Journal of the Chemical Society (Resumed), 1931: 1456–1462.
29.    Ebihara, S. Kawamoto, N. Shibata, T. Yamaguchi, F. Suzuki, T. Nakagawa, Development of a modified Britton-Robinson buffer with improved linearity in the alkaline pH region, Biojournal of Science and Technology, 2016; Vol:3.
30.    G.J. Moody, N.S. Nassory, J.D.R. Thomas, Some observations on the selectivity assessment of calcium ion-selective electrodes, Hung. Sci. Instrum., 41, 1977, 23-26.
31.    R. Buck, E. Lindner, Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994), Pure and Applied Chemistry, 2009; 66(12): 2527-2536.
32.    G.J. Moody, N.S. Nassory, J.D.R. Thomas, Calcium ion-selective electrodes based on calcium bis[di(p-1,1,3,3- tetramethylibuthyl phenyl)- phosphate] sensor and trialkyl phosphate mediators, Analyst (London), 103(1), 1978, 68-71.
33.    R.P. Buck, E. Lindner, Recommendations for nomenclature of ion-selective electrodes, Pure and Applied Chemistry: Analytical Chemistry Division, 2009; 66(12): 2527-2536.
34.    Y. Umezawa, P. Bühlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes part I. inorganic cations (technical report). Pure and Applied Chemistry: Analytical Chemistry Division, 2000; 72(10): 1851-2082.
35.    J.D.R. Thomas, Devices for ion-sensing and pX measurement, Pure and Applied Chemistry: Analytical Chemistry Division, 2001; 73(1): 31-38.
36.    T. Sirisha et al., Simultaneous Determination of Ciprofloxacin and Tinidazole in Tablet Dosage Form by Reverse Phase High Performance Liquid Chromatography, Tropical Journal of Pharmaceutical Research, June 2014; 13(6): 981-987.
37.    R.P. Buck, E. Lindner, Recommendations for nomenclature of ion-selective electrodes, Pure and Applied Chemistry: Analytical Chemistry Division, 1994; 66(12): 2527-2536.
38.    S. Dabrowska, J. Migdalski, A. Lewenstam, A Breakthrough Application of a Cross-Linked Polystyrene Anion-Exchange Membrane for a Hydrogencarbonate Ion-Selective Electrode. Sensors (Basel, Switzerland), 2019; 19(6): 1268.
39.    M.S. Bassmajei, Determination of Some Pharmaceutical Compounds by New Plastic Membrane Ion-Selective Electrodes. doctoral diss., University of Aleppo, Aleppo, Syria, 2005.
40.    H. Mandil, A.A. Sakur, B. NASSER, New ion selective electrode for potentiometric determination of gatifloxacin in pure form and pharmaceutical formulations, Int. J Pharm Pharm Sci, 2013; 5(2): 423-428.
41.    P.C. Meier, R.E. Zünd, Statistical Methods in Analytical Chemistry, 2nd Edn., in J.D. Winefordner (Ser. Edr.), Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, 153 (New York, Wiley-Interscience Publication, 2000): 48-55 and 69-72.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available