Author(s): SK. Abdul Mathin, M. David Raju, D. Rama Sekhara Reddy


DOI: 10.5958/0974-360X.2020.01042.2   

Address: SK. Abdul Mathin1*, M. David Raju2, D. Rama Sekhara Reddy3
1Department of Basic Sciences and Humanities, Gudlavalleru Engineering College, Gudlavalleru- 521356, AP.
2Department of Chemistry, P. B. Siddhartha College of Arts and Sciences, Vijayawada-521010, AP.
3Department of Chemistry, Krishna University, Machilipatnam-521001, AP.
*Corresponding Author

Published In:   Volume - 13,      Issue - 12,     Year - 2020

In the present investigation, we have described the green biosynthesis of Zinc nanoparticles (ZnNPs) using aqueous root extract of Sphagneticola trilobata Lin as capping agent. The antioxidant, anti-diabetic and antimicrobial activities of ZnNPs was also studied. The Scanning Electron Microscopy analysis (SEM) results confirmed the irregular shaped of AgNPs with difference sizes of the particles and an average from 65-80 nm. X-ray diffraction (XRD) result confirmed the characteristic peaks indicated at 111, 200, 221 and 311 crystal planes for the crystalline of the face centered cubic lattice. Further, aqueous root extract extract and ZnNPs were evaluated to assess their antioxidant potential using various in vitro systems such as using 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Hydroxyl radical scavenging activity. The anti-diabetic and anti-inflammatory activity of the aqueous root extract and ZnNPs were also studied and the results confirm the Zinc nano particles synthesized using aqueous root extract of Sphagneticola trilobata Lin were found to having enhanced pharmacological activities.

Cite this article:
SK. Abdul Mathin, M. David Raju, D. Rama Sekhara Reddy. Green synthesis, Characterization and application study of Zinc nano particles Synthesized using aqueous root extract of Sphagneticola trilobata Lin. Research J. Pharm. and Tech. 2020; 13(12):5972-5978. doi: 10.5958/0974-360X.2020.01042.2

SK. Abdul Mathin, M. David Raju, D. Rama Sekhara Reddy. Green synthesis, Characterization and application study of Zinc nano particles Synthesized using aqueous root extract of Sphagneticola trilobata Lin. Research J. Pharm. and Tech. 2020; 13(12):5972-5978. doi: 10.5958/0974-360X.2020.01042.2   Available on:

1.    Malarkodi Velraj, et al. Biosynthesis of Silver Nano Particles from the Ethanolic Extract Fruits of Mallotus phillipensis. Research J. Pharm. and Tech. 2017; 10(1): 21-25.
2.    Singh B.N., et al.: Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids, PLoS One, 2014, 9(9).
3.    Makarov et al.: Green nanotechnologies: Synthesis of metal nanoparticles using plants, Acta Naturae, 2014, 6.35-44.
4.    Mukunthan K.S., and Balaji S.: Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles, Int. J. Green Nanotechnol, 2014, 4, 71–79.
5.    Iravani S.: Green chemistry green synthesis of metal nanoparticles using plants, Green Che, 2011, 13, 2638–2650.
6.    Kumar V., and Yadav S.K.: Plant-mediated synthesis of silver and gold nanoparticles and their applications, J. Chem. Technol. Biotechnol, 2009, 84, 151–157.
7.    Li J., Guo D., et al.: The photodynamic effect of different size ZnO nanoparticles on cancer cell proliferation in vitro, Nanoscale Res. Lett. 2010, 5, 1063-1071.
8.    Premanathan M., et al.: Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation, nanomedicine nanotechnology, Biol. Med. 2011, 7, 184–192.
9.    Das D., et al.: Colloids and surfaces B.: Biointerfaces synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity, Colloids Surf.B Bio interf. 2013, 111, 556–560.
10.    Kim Y.J., and Varma R.S.: Tetrahedron Lett. 2004, 45, 7205–7208.
11.    Vaseem M., Umar A., and Hahn Y.B.: ZnO nanoparticles: growth, properties, and applications, Metal Oxide Nanostructures and Their Applications, 2010, 1–36.
12.    Nohavica D., and Gladkov P.. ZnO nanoparticles and their applications-new achievements, Olomouc, Czech Republic, EU, 2010, 10, 12–14.
13.    Fageria P., Gangopadhyay S., and Pande S.: Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photo catalytic application using UV and visible light, R. Soc. Chem. Adv. 2014, 4 (48), 24962–24972.
14.    Zheng Y., et al: Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photo catalysis, Inorg. Chem. 2007, 46 (17), 6980–6986.
15.    Liu H.R. et al.: Worm-like Ag/ZnO core–shell heterostructural composites: fabrication, characterization, and photocatalysis, J. Phys. Chem. 2012, C 116 (30), 16182–16190.
16.    Abdul Ameer, Al-Laith., Jameel Alkhuzai., and Afnan Freije.: Assessment of antioxidant activities of three wild medicinal plants from Bahrain, Arabian Journal of Chemistry, 2015.
17.    Mohamed S., et al.: Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract, J. Saudi Chem. Soc. 2013, 18(4).
18.    Gella F.J., et al.: Determination of total and pancreatic alpha-amylase in human serum with 2-chloro-4- nitrophenyl-alpha-D-maltotrioside as substrate, Clin Chim Acta, 1997, 259, 147-160.
19.    Happy Agarwal., and Venkat Kumar Shanmugam.: Anti-inflammatory activity screening of Kalanchoe pinnata methanol extract and its validation using a computational simulation approach, Informatics in Medicine Unlocked, 2019, 14, 6-14.
20.    Manikanth S.B., et al Anti-oxidanteffect of gold nanoparticles restrains hyperglycemic conditions indiabetic mice, J. Nanobiotechnol, 2010, 8, 77–81.
21.    Ashokkumar S., et al.: Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity, Spectrochim.Acta A Mol. Biomol. Spectrosc, 2015, 134, 34-39.
22.    Swamy M.K. et al.: Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities, Spectrochim. Acta A Mol. Biomol. Spectrosc, 2015, 151, 939-944.
23.    Mathew S., and Abraham T.E.: In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies, Food Chem Toxicol. 2006, 44(2), 198-206.
24.    Molyneux P.: The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity, Songklanakarin J Sci Technol, 2003, 26(2), 211-219.
25.    Sanchez-Moreno C.: Review: method used to evaluate the free radical scavenging activity in foods and biological systems, Food Sci Technol Int, 2002, 8(3), 121-137.
26.    Amarowicz R., et al., Free radical scavenging capacity and antioxidant selected plant species from the Canadian prairies, Food Chem, 2004, 84(4), 551-562.
27.    Yim H.S., et al.: Antioxidant activities andtotal phenolic content of aqueous extract of Pleurotus ostreatus (cultivatedoyster mushroom), Malaysian J Nutr, 2010,16(2), 281-291.
28.    Hemmami T., and Parihar M.S.: Reactive oxygen damage, Ind J Physiol Pharmacol, 1998, 42(4), 440-452.
29.    Pietta P.G.: Flavonoids as antioxidants, J Nat Prod, 2000, 63(7), 1035-1042.
30.    Wickens A.P.: Aging and the free radical theory, Respir Physiol, 2001, 128(3), 379-391.
31.    Perumal A., et al.: Inhibition of albumin denaturation and anti-inflammatory activity of furfuryl substituted pyrimidinoimidazolinones, Int J Chem Sci, 2008, 6(4), 2016-2022.
32.    Elisha I. et al.: The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis, BMC Complement Altern Med, 2016, 16, 307-316.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available