Author(s): Abirla. M, Rajakumari. K.

Email(s): rajikumari91@gmail.com

DOI: 10.5958/0974-360X.2020.00285.1   

Address: Abirla. M, Rajakumari. K.
Department of Bioengineering, Vels Institute of Science, Technology and Advanced Studies Chennai-600117.
*Corresponding Author

Published In:   Volume - 13,      Issue - 3,     Year - 2020


ABSTRACT:
Nanomedicine is a field of medicine with the application of nanomaterials, nano biosensor and other nano level biological materials. At present, Nanotherapy has rapid growth in the field of nanomedicine for the treatment of various diseases. Nanotherapy involves the usage of nanoparticles to deliver a drug to its target. The nanoparticles employed here acts as a carrier for drugs. Nanotherapy is mainly directed towards the cancer treatment. Since the drug attacks both healthy and cancerous cells. To avoid the drug targeting the healthy cells the nanoparticles acts as a carrier and aids the drug in targeting the cancer cells specifically. Thus Nanotherapy is preferred than chemotherapy in the treatment of cancer as it overcomes few drawbacks in it. It also involves nano drug molecules in targeting cancerous cells. There are many methods in the delivery of nanoparticles. The nanoparticles are chosen based on their size, reactivity etc. This review covers up the advantages and challenges of nanotherapy for cancer treatment.


Cite this article:
Abirla. M, Rajakumari. K. Nanotherapy for Cancer – A Review. Research J. Pharm. and Tech 2020; 13(3):1575-1579. doi: 10.5958/0974-360X.2020.00285.1

Cite(Electronic):
Abirla. M, Rajakumari. K. Nanotherapy for Cancer – A Review. Research J. Pharm. and Tech 2020; 13(3):1575-1579. doi: 10.5958/0974-360X.2020.00285.1   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-3-90


REFERENCES:
1.    Yang, Guoyu, Sheng Chen, and Jianxiang Zhang. "Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases." Frontiers in Pharmacology 10 (2019): 751.
2.    Sondi, Ivan, and Branka Salopek-Sondi. "Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria." Journal of Colloid and Interface Science 275.1 (2004): 177-182.
3.    Teixeira, M. C., et al. "Advances in antibiotic nanotherapy: Overcoming antimicrobial resistance." Emerging Nanotechnologies in Immunology. Elsevier, 2018. 233-259.
4.    Sadowski, Zygmunt, et al. "Synthesis of silver nanoparticles using microorganisms." Materials Science-Poland 26.2 (2008): 419-424.
5.    Wurm, Frederik R., and Clemens K. Weiss. "Nanoparticles from renewable polymers." Frontiers in chemistry 2 (2014): 49.
6.    Iravani, Siavash. "Green synthesis of metal nanoparticles using plants." Green Chemistry 13.10 (2011): 2638-2650.
7.    Cho, Kwangjae, et al. "Therapeutic nanoparticles for drug delivery in cancer." Clinical Cancer Research 14.5 (2008): 1310-1316.
8.    Soppimath, Kumaresh S., et al. "Biodegradable polymeric nanoparticles as drug delivery devices." Journal of Controlled Release 70.1-2 (2001): 1-20.
9.    Kumari, Avnesh, Sudesh Kumar Yadav, and Subhash C. Yadav. "Biodegradable polymeric nanoparticles based drug delivery systems." Colloids and Surfaces B: Biointerfaces 75.1 (2010): 1-18.
10.    Malam, Yogeshkumar, Marilena Loizidou, and Alexander M. Seifalian. "Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer." Trends in pharmacological Sciences 30.11 (2009): 592-599.
11.    Lavan, David A., Terry McGuire, and Robert Langer. "Small-scale systems for in vivo drug delivery." Nature Biotechnology. 21.10 (2003): 1184.
12.    Chen, Hongmin, et al. "Nanoparticles for improving cancer diagnosis." Materials Science and Engineering: R: Reports74.3 (2013): 35-69.
13.    Blanco, E., Hsiao, A., Ruiz-Esparza, G. U., Landry, M. G., Meric-Bernstam, F., and Ferrari, M. (2011). Molecular-targeted nanotherapies in cancer: enabling treatment specificity.  Molecular Oncology, 5(6), 492-503.
14.    Goya, G. F., V. Grazu, and M. R. Ibarra. "Magnetic nanoparticles for cancer therapy." Current Nanoscience 4.1 (2008): 1-16.
15.    Jacob, Ayden, and Krishnan Chakravarthy. "Engineering Magnetic Nanoparticles for Thermo-Ablation and Drug Delivery in Neurological Cancers." Cureus 6.4 (2014).
16.    Jain, Suneil, D. G. Hirst, and J. M. O'sullivan. "Gold nanoparticles as novel agents for cancer therapy." The British Journal of Radiology 85.1010 (2012): 101-113.
17.    Patra, Chitta Ranjan, et al. "Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer." Advanced Drug Delivery Reviews. 62.3 (2010): 346-361.
18.    Bagheri, S., Yasemi, M., Safaie-Qamsari, E., Rashidiani, J., Abkar, M., Hassani, M., and Kooshki, H. (2018). Using gold nanoparticles in diagnosis and treatment of melanoma cancer. Artificial Cells, Nanomedicine, and Biotechnology,  46(Sup1), 462-471.
19.    Bisht, Savita, et al. "Polymeric nanoparticle-encapsulated curcumin (" nanocurcumin"): a novel strategy for human cancer therapy." Journal of Nanobiotechnology 5.1 (2007): 3.
20.    Liechty, William B., and Nicholas A. Peppas. "Expert opinion: responsive polymer nanoparticles in cancer therapy." European Journal of Pharmaceutics and Biopharmaceutics. 80.2 (2012): 241-246.
21.    Peer, Dan, et al. "Nanocarriers as an emerging platform for cancer therapy." Nature Nanotechnology 2.12 (2007): 751.
22.    Lu, W., Singh, A. K., Khan, S. A., Senapati, D., Yu, H., and Ray, P. C. (2010). Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 132(51), 18103-18114.
23.    Fiorillo, M., Verre, A. F., Iliut, M., Peiris-Pagés, M., Ozsvari, B., Gandara, R., and Lisanti, M. P. (2015). Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget, 6(6), 3553.
24.    del Burgo, L. S., Hernández, R. M., Orive, G., and Pedraz, J. L. (2014). Nanotherapeutic approaches for brain cancer management. Nanomedicine: Nanotechnology, Biology and Medicine, 10(5), e905-e919.
25.    Schumann, C., Taratula, O., Khalimonchuk, O., Palmer, A. L., Cronk, L. M., Jones, C. V., and Taratula, O. (2015). ROS-induced nanotherapeutic approach for ovarian cancer treatment based on the combinatorial effect of photodynamic therapy and DJ-1 gene suppression. Nanomedicine: Nanotechnology, Biology and Medicine, 11(8), 1961-1970.
26.    Meng, H., Zhao, Y., Dong, J., Xue, M., Lin, Y. S., Ji, Z. and Zink, J. I. (2013). Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS nano, 7(11), 10048-10065.
27.    Díaz, A., González, M. L., Pérez, R. J., David, A., Mukherjee, A., Báez, A., and Colón, J. L. (2013). Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy. Nanoscale, 5(23), 11456-11463.
28.    Ediriwickrema, Asiri, and W. Mark Saltzman. "Nanotherapy for cancer: targeting and multifunctionality in the future of cancer therapies." ACS Biomaterials Science and Engineering 1.2 (2015): 64-78.
29.    Mozafari, M. R., Pardakhty, A., Azarmi, S., Jazayeri, J. A., Nokhodchi, A., and Omri, A. (2009). Role of nanocarrier systems in cancer nanotherapy. Journal of Liposome Research, 19(4), 310-321.
30.    Faunce, Thomas Alured. "Nanotherapeutics: new challenges for safety and cost-effectiveness regulation in Australia." (2007).
31.    Shi, J., Kantoff, P. W., Wooster, R., and Farokhzad, O. C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 17(1), 20.
32.    Bai, Jamuna, and V. Ravishankar Rai. "Environmental risk, human health, and toxic effects of nanoparticles." Nanomaterials for Environmental Protection (2014): 523.
33.    Conde, J. (2018). An analysis on Cancer Nanotherapy: does Nanotechnology have a delivery problem?. Proceedings of the Nature Research Society, 2(1), 02001.
34.    Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., and Dai, H. (2008). Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Research, 68(16), 6652-6660.
35.    Liu, Z., Tabakman, S., Welsher, K., and Dai, H. (2009). Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Research, 2(2), 85-120.
36.    Suri, S. S., Fenniri, H., and Singh, B. (2007). Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology, 2(1), 16.
37.    Jauhari, S., Singh, S., and Dash, A. K. (2009). Paclitaxel. In Profiles of Drug Substances, Excipients and Related Methodology (Vol. 34, pp. 299-344). Academic Press.
38.    Wang, X., Yucel, T., Lu, Q., Hu, X., and Kaplan, D. L. (2010). Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials, 31(6), 1025-1035.
39.    Gref, R., Domb, A., Quellec, P., Blunk, T., Müller, R. H., Verbavatz, J. M., and Langer, R. (1995). The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced Drug Delivery Reviews, 16(2-3), 215-233.
40.    Mora-Huertas, C. E., Fessi, H., and Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385(1-2), 113-142.
41.    Chen, Y., Chen, H., Zeng, D., Tian, Y., Chen, F., Feng, J., and Shi, J. (2010). Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano, 4(10), 6001-6013.
42.    Fu, Jinglin, and Hao Yan. "Controlled drug release by a nanorobot." Nature Biotechnology 30.5 (2012): 407.
43.    Bhat, A. S. (2014). Nanobots: the future of medicine.  International Journal of Management and Engineering Sciences, 5(1), 44-49.
44.    Wong, Kaufui V., and Omar De Leon. "Applications of nanofluids: current and future." Advances in Mechanical Engineering 2 (2010): 519659.
45.    Abbasi, F. M., T. Hayat, and B. Ahmad. "Peristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug delivery." Journal of Molecular Liquids 207 (2015): 248-255.
46.    Abbasi, F. M., T. Hayat, and A. Alsaedi. "Peristaltic transport of magneto-nanoparticles submerged in water: model for drug delivery system." Physica E: Low-dimensional Systems and Nanostructures 68 (2015): 123-132.
47.    Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J. S., and Gao, J. (2006). Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Letters, 6(11), 2427-2430.
48.    Tyrrell, Zachary L., Youqing Shen, and Maciej Radosz. "Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers." Progress in Polymer Science 35.9 (2010): 1128-1143.
49.    Gaucher, G., Dufresne, M. H., Sant, V. P., Kang, N., Maysinger, D., and Leroux, J. C. (2005). Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release, 109(1-3), 169-188.
50.    Sanchez-Moreno, P., Ortega-Vinuesa, J. L., Peula-Garcia, J. M., Marchal, J. A., and Boulaiz, H. (2018). Smart drug-delivery systems for cancer nanotherapy. Current Drug Targets, 19(4), 339-359.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available