Author(s): P.K. Upadhyay, Vikas Kumar Jain, Kavita Sharma, Ravi Sharma

Email(s): ,

DOI: 10.5958/0974-360X.2020.00297.8   

Address: P.K. Upadhyay1, Vikas Kumar Jain2, Kavita Sharma3, Ravi Sharma4
1Department of Physics, Govt.Nagrik Kalyan Mahavidyalaya Ahiwara, Durg (C.G.) India.
2Department of Chemistry, Govt. Engineering College, Sejbahar, Raipur (C.G.) India.
3Department of Botany, Govt. Arts and Commerce Girls College Raipur (C.G.) India.
4Department of Physics, Govt. Arts and Commerce Girls College Raipur (C.G.) India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 4,     Year - 2020

Over the last decade, nanotechnology has been one of the fastest-growing areas of science and technology. The unique physico-chemical properties of various nanomaterials make it possible to create new structures, systems or devices with potential applications in a wide variety of disciplines. Presently, because of nanodimension of functional components of living cells, the application of nanotechnologies in biomedical purposes is inevitable. Zinc oxide (ZnO) possesses unique semiconducting, optical, and piezoelectric properties, so it has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. One of the most promising directions is to use zinc nanoparticles for molecular diagnostics, target delivery of drugs, developing new pharmaceutical preparations. The paper reports the synthesis, characterization of ZnO nanoparticles. Their location in the organism and role in important biological processes, which show the ways of possible practical applications of zinc nanoparticles in biomedicine are also discussed.

Cite this article:
P.K. Upadhyay, Vikas Kumar Jain, Kavita Sharma, Ravi Sharma. Synthesis and Applications of ZnO Nanoparticles in Biomedicine. Research J. Pharm. and Tech. 2020; 13(4):1636-1644. doi: 10.5958/0974-360X.2020.00297.8

P.K. Upadhyay, Vikas Kumar Jain, Kavita Sharma, Ravi Sharma. Synthesis and Applications of ZnO Nanoparticles in Biomedicine. Research J. Pharm. and Tech. 2020; 13(4):1636-1644. doi: 10.5958/0974-360X.2020.00297.8   Available on:

1.    Glomm, R.W. (2005). Functionalized nanoparticles for application in biotechnology, J.Dispersion Sci. Technology, 26, 389-314
2.    Chan, W.C.W. (2006). Bionanotechnology progress and advances, Biology Blood Marrow Transplantation, 12, 87-91
3.    Boisselier, E.; Astruc, D. (2009) Gold nanoparticles in nanomedicine: preparation, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev., 38, 1759-1782
4.    Perez, J.; Bax, L.; Escolano, C. Roadmap Report on Nanoparticles;Willems and Van DenWildenberg: Barcelona, Spain, 2005.
5.    Prylutska S.V., Remenyak O.V., Goncharenko Yu.V., Prylutskyy Yu.I. Carbon nanotubes as a new class of materials for bionanotehnology Biotechnology, 2009, 2, 2, 55-66 (in Ukrainian)
6.    Sagalianov I.Yu., Prylutskyy Yu.I., Radchenko T.M.,Tatarenko V.А. Graphene systems: methods of preparations and processing, structure and functional properties, Usp. Metal Physics, 2010, 11,1, 95-138 (in Ukrainian).
7.    Prylutska S.V., Kichmarenko Yu.M., Bogutska K.I.,Prylutskyy Yu.I. Fullerene C60 and its derivatives asanticancer agents: problems and prospects, Biotechnology, 2012, 5, 3, 9-17 (in Ukrainian).
8.    Chekman I.S. Nanoparticles: Properties and appli_cation prospects, Ukr. Biokhim. Zh. 2009, Vol. 81, 122-129 (in Ukrainian).
9.    Chekman I.S., Gorchakova N.A., Ozeychuk O.Y.Nanomaterials and nanoparticles: classification, Sci.Bulletin of O. Bogomolets National Medical University, 2009, 2, 188-201 (in Ukrainian).
10.    Martínez-Carmona, M.; Gun’ko, Y.; Vallet-Regí, M. ZnO Nanostructures for Drug Delivery and Theranostic Applications. Nanomaterials 2018, 8, 268.
11.    Xiong, H.-M. ZnO Nanoparticles Applied to Bioimaging and Drug Delivery. Adv. Mater. 2013, 25, 5329–5335.
12.    Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 2019, 9, 14638–14648.
13.    Król, A.; Pomastowski, P.; Rafi´ nska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci. 2017, 249, 37–52.
14.    Wiegand, C.; Hipler, U.-C.; Boldt, S.; Strehle, J.;Wollina, U. Skin-protective e_ects of a zinc oxide-functionalized textile and its relevance for atopic dermatitis. Clin. Cosmet Investig. Derm. 2013, 6, 115–121.
15.    Yu, X.; Marks, T.J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383.
16.    Chen, X.; Tang, Y.; Liu,W. E_cient Dye-Sensitized Solar Cells Based on Nanoflower-like ZnO Photoelectrode.Molecules 2017, 22, 1284.
17.    Jin, S.-E.; Jin, J.E.; Hwang, W.; Hong, S.W. Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection. Int. J. Nanomed. 2019, 14, 1737–1751.
18.    Ramirez-Canon, A.; Medina-Llamas, M.; Vezzoli, M.; Mattia, D. Multiscale design of ZnO nanostructured photocatalysts. Phys. Chem. Chem. Phys. 2018, 20, 6648–6656.
19.    Agarwal, H.; Kumar, V.; Shanmugam, R. A review on green synthesis of zinc oxide nanoparticles—Aneco-friendly approach. Resour. E_c. Technol. 2017, 3.
20.    Brayner, R.; Dahoumane, S.A.; Yéprémian, C.; Djediat, C.; Meyer, M.; Couté, A.; Fiévet, F. ZnO Nanoparticles: Synthesis, Characterization, and Ecotoxicological Studies. Langmuir 2010, 26, 6522–6528.
21.    Malfatti, L.; Pinna, A.; Enzo, S.; Falcaro, P.; Marmiroli, B.; Innocenzi, P. Tuning the phase transition of ZnO thin films through lithography: An integrated bottom-up and top-down processing. J. Synchrotron Radiat. 2015, 22, 165–171.
22.    Krupi´ nski, P.; Kornowicz, A.; Sokołowski, K.; Cie´slak, A.M.; Lewi´ nski, J. Applying Mechanochemistry for Bottom-Up Synthesis and Host–Guest Surface Modification of Semiconducting Nanocrystals: A Case of Water-Soluble _-Cyclodextrin-Coated Zinc Oxide. Chem. Eur. J. 2016, 22, 7817–7823.
23.    Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 2016, 38, 545–560.
24.    Ahmad, R.; Tripathy, N.; Park, J.-H.; Hahn, Y.-B. A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea. Chem. Comm. 2015, 51, 11968–11971.
25.    Khan,W.; Ajmal, M.; Khan, F.; Huda, N.; Kim, S.-D. Induced Photonic Response of ZnO Nanorods Grown onOxygen Plasma-Treated Seed Crystallites. Nanomaterials 2018, 8, 371.
26.    Sharifalhoseini, Z.; Entezari, M.; Shahidi, M. Synergistic e_ect of low and high intensity ultrasonic irradiation on the direct growth of ZnO nanostructures on the galvanized steel surface: Investigation of the corrosion behavior. Ultrason. Sonochem. 2018, 44.
27.    Zeng, H.; Cai,W.; Li, Y.; Hu, J.; Liu, P. Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media. J. Phys. Chem. B 2005, 109, 18260–18266.
28.    Chang Dr, I. Plasma synthesis of metal nanopowders. Adv. Powder Metall. Prop. Process. Appl. 2013, 69–85.
29.    Zhang, Y.; Wang, L.; Liu, X.; Yan, Y.; Chen, C.; Zhu, J. Synthesis of Nano/Micro Zinc Oxide Rods and Arrays by Thermal Evaporation Approach on Cylindrical Shape Substrate. J. Phys. Chem. B 2005, 109, 13091–13093.
30.    Yadav, R.S.; Mishra, P.; Pandey, A.C. Tuning the band gap of ZnO nanoparticles by ultrasonic irradiation. Inorg. Mater. 2010, 46, 163–167.
31.    Thareja, R.K.; Shukla, S. Synthesis and characterization of zinc oxide nanoparticles by laser ablation of zincin liquid. Appl. Surf. Sci. 2007, 253, 8889–8895.
32.    Fricke, M.; Voigt, A.; Veit, P.; Sundmacher, K. Miniemulsion-Based Process for Controlling the Size and Shape of Zinc Oxide Nanoparticles. Ind. Eng. Chem. Res. 2015, 54, 10293–10300.
33.    Oliveira, A.P.A.; Hochepied, J.-F.; Grillon, F.; Berger, M.-H. Controlled Precipitation of Zinc Oxide Particles at Room Temperature. Chem. Mater. 2003, 15, 3202–3207.
34.    Wang, J.; Song, Y. Microfluidic Synthesis of Nanohybrids. Small 2017, 13, 1604084.
35.    Aneesh, P.M.; Vanoja, M.A.; Jayaraj, M. Synthesis ofZnOnanoparticles by hydrothermal method. Nanophotonic Mater. IV 2007.
36.    Shamsuzzaman; Mashrai, A.; Khanam, H.; Aljawfi, R.N. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab. J. Chem. 2017, 10, S1530–S1536.
37.    Moghaddam, A.B.; Moniri, M.; Azizi, S.; Rahim, R.A.; Ari_, A.B.; Saad, W.Z.; Namvar, F.; Navaderi, M. Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules 2017, 22, 872.
38.    Chauhan, R.; Reddy, A.; Abraham, J. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property. Appl. Nanosci. 2014.
39.    Rao, M.D.; Gautam, P. Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtii:A green approach. Env. Prog. Sustain. Energy 2016, 35, 1020–1026.
40.    Azizi, S.; Ahmad, M.B.; Namvar, F.; Mohamad, R. Green biosynthesis and characterization of zinc oxidenanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett. 2014, 116,275–277.
41.    Z˙ elechowska, K.; Karczewska-Golec, J.; Karczewski, J.; Łos´, M.; Kłonkowski, A.M.;We˛grzyn, G.; Golec, P.Phage-Directed Synthesis of Photoluminescent Zinc Oxide Nanoparticles under Benign Conditions. Bioconjug. Chem. 2016, 27, 1999–2006.
42.    Gharagozlou, M.; Baradaran, Z.; Bayati, R. A green chemical method for synthesis of ZnO nanoparticles from solid-state decomposition of Schi_-bases derived from amino acid alanine complexes. Ceram. Int. 2015, 41, 8382–8387.
43.    Divya, M.; Vaseeharan, B.; Abinaya, M.; Sekar, V.; Govindarajan, M.; Alharbi, N.; Km, S.; Khaled, J.; Benelli, G. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. J. Photochem. Photobiol. B 2017, 178.
44.    Ambika, S.; Sundrarajan, M. Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: Spectroscopic investigation of interaction betweenZnOnanoparticles andhumanserumalbumin. J. Photochem. Photobiol. B 2015, 149.
45.    Gawade, V.V.; Gavade, N.L.; Shinde, H.M.; Babar, S.B.; Kadam, A.N.; Garadkar, K.M. Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J. Mater. Sci. 2017, 28, 14033–14039.
46.    Ogunyemi, S.O.; Abdallah, Y.; Zhang, M.; Fouad, H.; Hong, X.; Ibrahim, E.; Masum, M.M.I.; Hossain, A.; Mo, J.; Li, B. Green synthesis of zinc oxide nanoparticles using di_erent plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol. 2019, 47, 341–352.
47.    Al-Jumaili, A.; Mulvey, P.; Kumar, A.; Prasad, K.; Bazaka, K.; Warner, J.; Jacob, M.V. Eco-friendlynanocomposites derived from geranium oil and zinc oxide in one step approach. Sci. Rep. 2019, 9, 5973.
48.    Ravi Sharma, D.P. Bisen, Usha Shukla and B.G. Sharma, X-ray diffraction: a powerful method of characterizing nanomaterials, Recent Research in Science and Technology 2012, 4(8): 77-79
49.    Shiv Kumar, Kandasami Asokan, Ranjan Kumar Singh, Sandip Chatterjee, Dinakar Kanjilal and Anup Kumar Ghosh, Investigations on structural and optical properties of ZnO and ZnO:Co nanoparticles under dense electronic excitations, RSC Adv., 4, (2014) 62123 -62131
50.    P. Bindu, Sabu Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis J. Theor. Appl. Phys., 8, (2014), 123 – 134
51.    R. Sharma, S.J. Dhoble, D.P. Bisen, N. Brahme, B.P. Chandra, Chemical route synthesis dependent particle size of Mn activated ZnS nanophosphor, Int. J. Nanoparticles 4 (1) (2011) 64 - 76.
52.    Li, X.; Cheng, S.; Deng, S.;Wei, X.; Zhu, J.; Chen, Q. Direct Observation of the Layer-by-Layer Growth of ZnO Nanopillar by In Situ High Resolution Transmission Electron Microscopy. Sci. Rep. 2017, 7, 40911.
53.    Ludi, B.; Niederberger, M. Zinc oxide nanoparticles: Chemical mechanisms and classical and non-classical crystallization. Dalton Trans. 2013, 42, 12554–12568.
54.    Pathik Kumbhakar, Devendra Singh, Chandra S. Tiwary, Amya K. Mitra,  Chalcogenide letters Chemical synthesis and visible photoluminescence emission from monodispersed ZnO nanoparticles 5,12 (2008) 387-394.
55.    T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Opto-Electronics, Butterworth and Co. Ltd. 1973.
56.    Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934.
57.    Laurenti, M.; Cauda, V. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications. Coatings 2018, 8, 67.
58.    Meshalkin Yu.P., Bgatova N.P. Prospects and prob_lems of the use of inorganics nanoparticles in oncology, J. Siberian Federal Univ. Biology, 2008,  1, 248-268 .
59.    Mikityuk M.V. Nanoparticles and prospects fortheir application in biology and medicine , Problems Ecology Med., 2011,  15, 5-6, 42- 50.
60.    Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825–1834.
61.    Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018, 2018, 18.
62.    Hackenberg, S.; Scherzed, A.; Harnisch, W.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. J. Photochem. Photobiol. B 2012, 114, 87–93.
63.    Peng, H.; Cui, B.; Li, G.; Wang, Y.; Li, N.; Chang, Z.; Wang, Y. A multifunctional _-CD-modified Fe3O4@ZnO:Er3+,Yb3+ nanocarrier for antitumor drug delivery and microwave-triggered drug release.Mater. Sci. Eng. C 2015, 46.
64.    Sharma, H.; Kumar, K.; Choudhary, C.; Mishra, P.K.; Vaidya, B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artif. Cells Nanomed. Biotechnol. 2016, 44, 672–679.
65.    Tripathy, N.; Ahmad, R.; Ko, H.A.; Khang, G.; Hahn, Y.-B. Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system. Nanoscale 2015, 7, 4088–4096.
66.    Thurber A., Wingett D.G., Rasmussen J.W., Layne J., Johnson L., Tenne D.A., Zhang J., Hanna C.B., Punnoose A. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping,  Nanotoxicol,  2012, 6, 4, 440- 452.
67.    Taccola L., Raffa V., Riggio C., Vittorio O., Iorio M.C., Vanacore R., Pietrabissa A., Cuschieri A. Zinc oxide nanoparticles as selective killers of proliferating cells, Int. J. Nanomed., 2011, 6, 1129- 1140.
68.    Syed M. Usman Ali, Fakhar-e-Alam M., Wazir Z., Kashif M., Atif M., Willander M., Syed W.A. Cytotoxic effects of zinc oxide nanoflakes (ZnO NFs) in human muscle carcinoma, In. J. Med. Med. Sci., 2012, 2, 1, 53-58.
69.    El-Gharbawy, R.; Emara, A.; Abu-Risha, S. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in Type-2 diabetes. Biomed. Pharm. 2016, 84, 810–820.
70.    Umrani, R.; Paknikar, K. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine 2014, 9, 89–104.
71.    Chausmer, A.B. Zinc, Insulin and Diabetes. J. Am. Coll Nutr. 1998, 17, 109–115.
72.    Tiyaboonchai W., Limpeanchob N. Formulation and characterization of amphotericin B- chitosan- dextran sulfate nanoparticles, Int. J. Pharmaceutics, 2007, 329, 142-149.
73.    Martínez-Carmona, M.; Gun’ko, Y.; Vallet-Regí, M. ZnO Nanostructures for Drug Delivery and Theranostic Applications. Nanomaterials 2018, 8, 268.
74.    L. E. Shi, Z. H. Li, W. Zheng, Y. F. Zhao, Y. F. Jin, and Z. X. Tang, “Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review,” Food Additives and Contaminants: Part A, vol. 31, no. 2, pp. 173–186, 2014.
75.    Y. Jiang, L. Zhang, D. Wen, and Y. Ding, “Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli,” Materials Science and Engineering: C, vol. 69, pp. 1361–1366, 2016.
76.    R. K. Dutta, B. P. Nenavathu, M. K. Gangishetty, and A. V. Reddy, “Antibacterial effect of chronic exposure of low concentration ZnO nanoparticles on E. coli,” Journal of Environmental Science and Health: Part A, vol. 48, no. 8, pp. 871–878, 2013.
77.    Jin, S.-E.; Jin, J.E.; Hwang, W.; Hong, S.W. Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection. Int. J. Nanomed. 2019, 14, 1737–1751.
78.    Jin, S.-E.; Hwang, W.; Lee, H.J.; Jin, H.-E. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage. Int. J. Nanomed. 2017, 12, 8057–8070.
79.    Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharm. 2019, 109, 2561–2572.
80.    Nagajyothi, P.C.; Cha, S.J.; Yang, I.J.; Sreekanth, T.V.M.; Kim, K.J.; Shin, H.M. Antioxidant andanti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B 2015, 146, 10–17.
81.    Bajwa, N.; Mehra, N.; Jain, K.; Jain, N. Pharmaceutical and biomedical applications of quantum dots. Artif. Cells Nanomed. Biotechnol. 2015, 44, 1–11.
82.    Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 2017, 12, 5421–5431.
83.    Lin, P.-H.; Sermersheim, M.; Li, H.; Lee, P.H.U.; Steinberg, S.M.; Ma, J. Zinc inWound Healing Modulation. Nutrients 2018, 10, 16.
84.    Nethi, S.K.; Das, S.; Patra, C.R.; Mukherjee, S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater. Sci. 2019, 7, 2652–2674.
85.    Ågren, M.S.; Chvapil, M.; Franzén, L. Enhancement of re-epithelialization with topical zinc oxide in porcine partial-thickness wounds. J. Surg. Res. 1991, 50, 101–105.
86.    Rajendran, N.K.; Sundar, S.; Houreld, N.; Abrahamse, H. A review on nanoparticle based treatment for wound healing. J. Drug Deliv. Sci. Technol. 2018, 44.
87.    Zhao Z, Lei W, Zhang X, Wang B, Jiang H. ZnO-Based Amperometric Enzyme Biosensors. Sensors (Basel) 2010;10:1216–31.
88.    Wang JX, Sun XW, Wei A, et al. Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett. 2006; 88:233106.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available