Author(s):
Zainab A. Al -Kubaisi, Hanady S. Al-Shmgani, Manal Jabber Salman
Email(s):
hanadysalim@yahoo.com
DOI:
10.5958/0974-360X.2020.00690.3
Address:
Zainab A. Al -Kubaisi1, Hanady S. Al-Shmgani1, Manal Jabber Salman2
1Biology Department, College of Education for Pure Science/Ibn al-Haitham, University of Baghdad, Baghdad, Iraq.
2Department of Higher Studies University of Baghdad, Baghdad, Iraq.
*Corresponding Author
Published In:
Volume - 13,
Issue - 8,
Year - 2020
ABSTRACT:
Quercetin, one of the flavonoids family member, can be found in many vegetables, fruits, and beverages with a noticeable nutritional pharmacological properties. This study was aimed to evaluate the ability of quercetin to inhibit lipopolysaccharide (LPS) that induced lethal toxicity in vivo, and to elucidate the importance of the quercetin as an antitumor agent in breast cancer cell line MCF-7.In vivo experiments included the effect of hesperidin and LPS on the liver and spleen of male mice. In the liver, the antioxidant activity was measured by estimating the concentration of glutathione (GSH), and catalase (CAT), while in the spleen, the concentration of cytokines was measured including IL-33 and TNF-a. In vitro experiments included MTT assay, colonogenicity test and Sulforhadamine 101 to assess breast cancer cells morphological apoptosis. The studies revealed the following results: highly significant increase in IL-33 and TNF-acytokine levels in LPS challenge mice along with significant glutathione (GSH), and catalase (CAT) level increased compared to control group. The cytotoxicity on MCF-7 cell line showed significant differences between groups treated with different concentrations in comparison with control groups in a concentration-dependent manner. The colony measurement test showed that quercetin significantly inhibited colony formation of MCF7 cells compared to control. Apoptotic morphological results showed clear changes in the shape associated with a later stage of apoptosis, including cell shrinking and chromatin condensation. The obtained results indicate that hesperidin might be a potential beneficial compound as a preventive agent.
Cite this article:
Zainab A. Al -Kubaisi, Hanady S. Al-Shmgani, Manal Jabber Salman. Evaluation of In vivo and In vitro protective effects of quercetin on Lipopolysaccharide-induced Inflammation and Cytotoxicology. Research J. Pharm. and Tech. 2020; 13(8):3897-3902. doi: 10.5958/0974-360X.2020.00690.3
Cite(Electronic):
Zainab A. Al -Kubaisi, Hanady S. Al-Shmgani, Manal Jabber Salman. Evaluation of In vivo and In vitro protective effects of quercetin on Lipopolysaccharide-induced Inflammation and Cytotoxicology. Research J. Pharm. and Tech. 2020; 13(8):3897-3902. doi: 10.5958/0974-360X.2020.00690.3 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-8-63
REFERENCES:
1. Boots, A.; G. Haenen; Bast, A. (2008). Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol., 585(2-3): 325-37.
2. Chung, Y.; Chen, S.; Hsu, C.; Chang, C. and Chou, S. (2005). Studies on the antioxidative activity of Graptopetalum paraguayense E. Walther. Food Chem., 91: 419-423.
3. Boots, A.; G. Haenen; Bast, A. (2008). Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol., 585(2-3): 325-37.
4. Majewska, M.; Skrzycki, M.; Podsiad, M. and Czeczot, H. (2011). Evaluation of antioxidant potential of flavonoids: an in vitro study. Acta Pol. Pharm., 68(4): 611-5.
5. Bannerman, D. D. and Goldblum, S. E. (1999). Direct effects of endotoxin on the endothelium: barrier function and injury. Lab. Invest., 79(10): 1181-99.
6. Kshash, Q.H.; Habasha, F.G. and Al-Rammahi, S.K. (2009). Experimental study on the role of purified LPS of E. coli O111:B4 in preventing mammary gland infection in mice. Iraqi J VeteSci,23 (11): 223-230.
7. Schumann, R. R., Kirschning, C. J., Unbehaun, A., Aberle, H. P., Knope, H. P., Lamping, N., Ulevitch, R. J., … Herrmann, F. (1996). The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT/3 and other cytokine-inducible nuclear proteins. Molecular and cellular biology, 16(7), 3490-503.
8. Al-Shmgani H. S., Moate R., Peter Macnaughton, Sneyd J.R., Moody A.J. (2013). Effect of hyperoxia on permeability of 16HBE14o-cell monolayer: the protective role of antioxidant vitamins E and C. FEBS journal.
9. Berridge M.V., Herst P.M. and Tan A.S. (2005). Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnol. Ann. Rev., 11: 127-152.
10. Taha H.R. (2007). Effect of crude extracts of Melia azedarach on cancer and normal cell line (in vitro). MSc thesis. University of Al-Nahrian, Iraq: pp113.
11. Beramaschi D., Ronzoni S., Taverna S., Faretta M., De Feudis P., Faircloth G., Jimeno J., Erba E., D’Incalci M. (1999). Cell cycle perturbations and apoptosis induced by isohomohalichondrin B (IHB), a natural marine compound. Brit. J. Cancer, 79(2): 267-277.
12. Al-Shmgani H. S., Mohammed W.H., Sulaiman G.M. and Saadon A.H. (2016). Biosynthesis of silver nanoparticles from Catharanthusroseus leaf extract and assessing their antioxidant, antimicrobial and wound healing activity, Artif. Cell Nanomed. Biotechnol., 45 (6):1-7.
13. Sedlak J. and Lindsay R. H. (1968). Estimation of total protein bound and non-protein sulfhydryl groups in tissue with Ellmans reagent. Anal. Biochem., 25: 192-205.
14. Huo H., Wang B., Liang Y.K., Bao Y. and Gu Y. (2011). Hepatoprotective and antioxidant effect of licorice extract against CCL4 induced oxidative damage in rat. Int J Mol. Sci., 12:6529-6543.
15. Chung, Y.; Chen, S.; Hsu, C.; Chang, C.; and Chou, S. (2005). Studies on the antioxidative activity of Graptopetalum paraguayense E. Walther. Food Chem., 91: 419-423.
16. Baumann, J.; Wurn, G. and Bruchlausen, FV. (1979). Prostaglandin synthase inhibiting O2-radical scavenging properties of some flavonoids and related phenoic compounds. N-Ss Arch. Pharmacol., 308: R27-R39.
17. Sak, K. (2014). Dependence of DPPH radical scavenging activity of dietary flavonoid quercetin on reaction environment. Mini Rev. Med. Chem., 14(6):494-504.
18. Majewska, M.; Skrzycki, M.; Podsiad, M. and Czeczot, H. (2011). Evaluation of antioxidant potential of flavonoids: an in vitro study. Acta Pol. Pharm., 68 (4): 611-615.
19. Chen, X. (2010). Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn, Mag., 6 (22): 135-141.
20. Fisher, C. J. (2003). Organoselenium compounds as glutathione peroxidase mimics. B-180 Medical Laboratories Free Radical and Radiation Biology Program, The University of Iowa.77:222.
21. Yang, K.; Hitomi, M. and Stacey, D. W. (2006). Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. Cell Div., 18: 1:32.
22. Han, D.; Canali, R.; Rettori, D. and Kaplowitz, N. (2003). Effect of Glutathione Depletion on Sites and Topology of Superoxide and Hydrogen Peroxide Production in Mitochondria. Molecul. Pharmacol., 64(5): 1136-1144.
23. Beutler, B. and Rietschel, E.T. (2003). Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol., 3(2): 169-76.
24. Li, J.; McQuade, T.; Siemer, A. B.; Napetschnig, J.; Moriwaki, K.; Hsiao, Y.-S.; Damko,E.; Moquin, D.; Walz, T.; McDermott, A.; Chan, F, K.-M. and Wu, H. (2012). The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell, 150 (2): 339–350.
25. Ullah, M. S.; Ahamad, M. and Ahmad, I. (2006). Toxic effects of Cypermethrin in female Rabbits. Pakistan Vet. J., 26 (4):193-196.
26. Graziani, Y.; Erikson, E. and Erikson, R. L. (1983). The effect of quercetin on the phosphorylation of the Rous sarcoma virus transforming gene product in vitro and in vivo. Eur. J. Biochem., 135(3): 583-9.
27. Gamet-Payrastre, L.; Manenti, S.; Gratacap, M.-P.; Tulliez, J; Chap, H. and Payrastre, B. (1999). Flavonoids and the inhibition of PKC and PI 3-kinase. Gen. Pharmacol., 32(3): 279-86.
28. Ying, B.; Yang, T.; Song, X.; Hu, X.; Fan, H.; Lu, X.; Chen, L.; Cheng, D.; Wang, T.; Liu, D.; Xu, D.; Wei, Y. and Wen, F. (2009). Quercetin inhibits IL-1 beta-induced ICAM-1 expression in pulmonary epithelial cell line A549 through the MAPK pathways. Mol. Biol. Rep., 36(7): 1825-32.
29. Choi, J.A.; Kim, J.Y.; Lee, J.Y.; Kang, C.M.; Kwon, H. J.; Yoo, Y. D.; Kim, T. W.; Lee, Y. S. and Lee, S. J. (2001). Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Internat. J. Oncol., 19(4):837–844.
30. Akbas, S.H.; Timur, M. and Ozben T. (2005). The effect of quercetin on topotecan cytotoxicity in MCF-7 and MDA-MB 231 human breast cancer cells. J. Surg. Res., 125(1): 49–55.
31. Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M. R.; Mansouri, E. and Khodadadi, A. (2017). Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl Med. J., 118 (2): 123-128.
32. Chien, S.-Y.; Wu, Y.-C.; Chung, J.-G.; Yang, J.-S.; Lu, H.-F.; Tsou, M.-F.; Wood, W.G.; Kuo, S.-J.; and Chen, D.-R. (2009). Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum. Exp. Toxicol., 28 (8): 493–503.
33. Chou, C.-C.; Yang, J.-S.; Lu, H.-F.; Ip, S.-W.; Lo, C.; Wu, C.-C.; Lin, J.-P.; Tang, N.-Y.; Chung, J.- G. and Chou, M.-J. (2010). Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res., 33(8): 1181-1191.
34. Jeong, J.-H., An, J. Y., Kwon, Y. T., Rhee, J. G., & Lee, Y. J. (2009). Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem.,106 (1): 73–82.