Author(s): Aditya Sharma, Vaibhav Rastogi, Prevesh Kumar, Neelkant Prasad

Email(s): adi99463@gmail.com

DOI: 10.5958/0974-360X.2020.00694.0   

Address: Aditya Sharma1*, Vaibhav Rastogi2, Prevesh Kumar2, Neelkant Prasad3
1School of Pharmaceutical Sciences, IFTM University, Moradabad-244102, Uttar Pradesh, India.
2Pharmacy Academy, IFTM University, Moradabad-244102, Uttar Pradesh, India.
3SGT College of Pharmacy, SGT University, Gurugram-122505, Haryana, India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 8,     Year - 2020


ABSTRACT:
At present, Lipid based preparations such as self-emulsifying, self-microemulsifying and self-nanoemulsifying drug delivery systems are reconnaissance in various treatment as a powerful methodology for improving the biocompatibility, bioavailability and disintegration pace of Biopharmaceutics Classification System Class II drugs. These details manages various preferences likewise decrease in food impact and between individual abnormality, effectiveness of preparations and the likelihood of assembling utilizing basic excipients realistic in the market. These preparations are essentially produced and physically unchangeable blends of oil, surfactants, co-surfactants and solubilized drugs that may regulated orally. These arrangements may also a financially conceivable approaches to articulate various pharmaceutically appropriate dosage forms with respect to topical, oral, pulmonary, or parenteral distribution. Present studies recommend a taxonomic outline of lipid-based systems and their mechanisms required to extend the dissolvability and bioavailability of inadequately water soluble drugs as like Aceclofenac, Gliclazide, Glibenclamide, Glimipride, Ketoconazole and so forth. Few constituents of lipid-based distribution can be used like Soya lecithin, Olive oil, Soyabean oil, Poloxomer, Tween 80 etc. specifically for oral delivery because of their physicochemical and biopharmaceutical viewpoints with their real effective characteristics. Additionally, this review also emphases about the methods can be utilized to get ready such conveyance delivery systems.


Cite this article:
Aditya Sharma, Vaibhav Rastogi, Prevesh Kumar, Neelkant Prasad. Formulation Approaches for Solubility Enhancement by Using Polar or Non-Polar Lipid Components of BCS Class II Drugs through LBDDS. Research J. Pharm. and Tech. 2020; 13(8):3918-3928. doi: 10.5958/0974-360X.2020.00694.0

Cite(Electronic):
Aditya Sharma, Vaibhav Rastogi, Prevesh Kumar, Neelkant Prasad. Formulation Approaches for Solubility Enhancement by Using Polar or Non-Polar Lipid Components of BCS Class II Drugs through LBDDS. Research J. Pharm. and Tech. 2020; 13(8):3918-3928. doi: 10.5958/0974-360X.2020.00694.0   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-8-67


REFERENCES:
1.    Waterbeemd H, Lennernas H, Artursson P. Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability, Wiley-VCH, Weinheim, Germany, 2003.
2.    Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutics Drug Classification: The correlation of in-vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 1995; 12:413-420.
3.    United States Food and Drug Administration. Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. August 2000. http://www.fda.gov/cder/guidance/361andfnl.htm.
4.    Mohd Y, Mohd A, Kumar A, Aggarwal A. Biopharmaceutical Classification System: An Account. International Journal of Pharm Tech Research. 2010; 2(3):1681-1690.
5.    Reddy BB, Karunakar A. Biopharmaceutics Classification System: A Regulatory Approach. Dissolution Technologies. 2011; 31-37.
6.    Wagh MP, Patel JS. Biopharmaceutical Classification System: Scientific Basis for Biowaiver Extensions. International Journal of Pharmacy and Pharmaceutical Sciences. 2010; 2(1):12-19.
7.    Aulton ME, Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, Churchill livingstone, Elsevier, 3rd edition, 2013.
8.    Guidance for Industry, Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), August 2000, BP
9.    Rohilla S, Rohilla A, Marwaha RK, Nanda A. Biopharmaceutical Classification System: A Strategic Tool for Classifying Drug Substances. International Research journal of pharmacy. 2011; 2(7):53-59.
10.    U.S. Food and Drug Administration, 07/04/2017, Available from: http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm128219.htm
11.    Thiel-Demby VE, Humphreys JE, St John Williams LA, Ellens HM, Shah N, Ayrton AD, Polli JW. Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay. Mol Pharm. 2009; 6(1):11-8.
12.    Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T. Solubility and dissolution profile assessment in drug discovery. Drug Metab. Pharmacokinet. 2007; 22:225–254.
13.    Bosselmann S, Williams RO. Route-specific challenges in the delivery of poorly water-soluble drugs. in Formulating Poorly Water Soluble Drugs, R. O. Williams III, A. B. Watts, and D. A. Miller, Eds., pp. 1–2, Springer, New York, NY, USA, 2012.
14.    Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods. 2000; 44:235-249.
15.    Johnsonm KC, Swindell AC. Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm. Res. 1996; 13:1795-1798.
16.    Curatolo W. Physical chemical properties of oral drug candidates in the discovery and exploratory development settings in: Pharmaceutical Science and Technology Today. 1998; 1(9):387-393.
17.    Bergström CA, Strafford M, Lazorova L, Avdeef A, Luthman K, Artursson P. Absorption classification of oral drugs based on molecular surface properties. J Med Chem. 2003; 46(4):558-70.
18.    Benet LZ, Amidon GL, Barends DM, Lennernas H, Polli JE, Shah VP, Stavchansky SA, Yu LX. The use of BDDCS in classifying the permeability of marketed drugs. Pharm. Res. 2008; 25:483-488.
19.    Dressman J, Butler J, Hempenstall J, Reppas C. The BCS: where do we go from here?, Pharm. Technol. 2001; 68-76.
20.    U.S FDA, Guidance for Industry, Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system, Washington, DC US Dep. Heal. Hum. Serv. 2000.
21.    Oh DM, Curl RL, Amidon GL. Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: A mathematical model. Pharm. Res. 1993; 10:264-270.
22.    Takano R, Furumoto K, Shiraki K, Takata N, Hayashi Y, Aso Y, Yamashita S. Rate-limiting steps of oral absorption for poorly water-soluble drugs in dogs; prediction from a miniscale dissolution test and a physiologically-based computer simulation. Pharm. Res. 2008; 25:2334-2344.
23.    Butler JM, Dressman JB. The developability classification system: Application of biopharmaceutics concepts to formulation development. J. Pharm. Sci. 2010; 99:4940-4954.
24.    Janssens S, Mooter GV. Review: physical chemistry of SDs. J. Pharm. Pharmacol. 2009; 61:1571-1586.
25.    Huang Y, Dai WG. Fundamental aspects of SD technology for poorly soluble drugs. Acta Pharm. Sin. B. 2014; 4:18-25.
26.    Leuner C, Dressman J. Improving drug solubility for oral delivery using SDs. Eur. J. Pharm. Biopharm. 2000; 50:47-60.
27.    Dixit AK, Singh RP. SD: A strategy for improving the solubility of poorly soluble drugs. IJRPBS. 2012; 3(2):960-966.
28.    Huda NH, Saffoon N, Sutradhar KB, Uddin R. Enhancement of Oral Bioavailability and SD: A Review. Journal of Applied Pharm Science. 2011; 1:13-20.
29.    Jain CP, Sharma A. SD: A promising technique to enhance solubility of poorly water soluble drug. Int. J of Drug Delivery. 2011; 3:149-170.
30.    Bowmik D, Harish G, Duraivel S, Kumar BP, Raghuvanshi V, Sampath KP. SD- an approach to enhance the dissolution rate of poorly water soluble drugs. The Pharma Innovation Journal, 2012; 1(12): 24-38.
31.    Kumar P. SD – A review. Journal of pharmaceutical and scientific innovation. 2012; 1(3):27-340.
32.    Thompson DO. Cyclodextrins Enabling Excipients: their Present and Future Use in Pharmaceuticals. Crit, Rev Ther. Drug Carrier Syst. 1997; 14(1):1-104.
33.    Myrdal PB, Yalkowsky SH. Complexation and Cyclodextrin. In: Swarbrick J, editor. Encyclopedia of Pharmaceutical Technology, Informa Health Care, 3rd edition, New York, USA, 2007.
34.    Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics. 2007; 329(1-2):1-11.
35.    Chaudhary VB, Patel JK. Cyclodextrin inclusion complex to enhance solubility of poorly water soluble drugs: a review. Int J Pharm Sci Res. 2013; 4(1):68-76.
36.    Bader H, Ringsdorf H, Schmidt B. Watersoluble polymers in medicine. Angew Makromol Chem. 1984; 123:457-485.
37.    Jones M, Leroux J. Polymeric micellesea new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999; 48:101-111.
38.    Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004; 56:1273-1289.
39.    Torchilin V. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004; 61:2549-2559.
40.    Gaucher G, Dufresne M, Sant VP. Block co-polymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005; 109:169-188.
41.    Kwon GS, Kano TO. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev. 1996 21:107-116.
42.    Yokoyama M, Kwon GS, Kataoka K. Preparation of micelle-forming polymer drug conjugates. Bioconjugate Chem. 1992; 3:295-301.
43.    Hoes CJT, Potman W, Feijen J. Optimization of macromolecular prodrugs of the antitumor antibiotic Adriamycin. J Control Release. 1985; 2:205-13.
44.    Duncan R, Rejmanova PK, Kopecek J. Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers I. Evaluation of daunomycin and puromycin conjugates in-vitro. Br J Cancer. 1987; 55:165-174.
45.    Endo N, Umemoto N, Hara T. A novel covalent modification of antibodies at their amino groups with retention of antigen-binding activity. J Immunol Methods. 1987; 104:253-258.
46.    Muller RH, Peters K, Becker R, Kruss B. Nanosuspension for IV administration of poorly soluble drugs-stability during sterilization and long term storage. Control Release Bioact. 1995; 22:574-575.
47.    Leuenberger H. Spray freeze-drying: the process of choice for low water soluble drugs. Journal of Nanoparticle Research. 2002; 4(1-2):111-119.
48.    Mumenthaler M, Leuenberger H. Atmospheric sprayfreeze drying: a suitable alternative in freeze-drying technology. International Journal of Pharmaceutics.1991; 72(2):97-110.
49.    Williams RQ. Process for production of nanoparticles and microparticles by spray freezing into liquid. US Patent no.20030041602, 2003.
50.    Briggs AR, Maxvell TJ. Process for preparing powder blends. US Patent no. 3721725, 1973.
51.    Rogers TL, Hu J, Yu Z, Johnston KP, Williams RO. A novel particle engineering technology: spray-freezing into liquid. International Journal of Pharmaceutics. 2002; 242(1-2):93-100.
52.    Buxton IR, Peach JM. Process and apparatus for freezing a liquid medium. US Patent no. 4470202, 1984.
53.    Purvis MT. Mattucci E, Crisp MT, Johnston KP, Williams RO. Rapidly dissolving repaglinide powders producers by the ultra-rapid freezing process. AAPS PharmSciTech. 2007; 8(3):58.
54.    Rasool AA, Hussain AA, Dittert LW. Solubility enhancement of some water-insoluble drugs in the presence of nicotinamide and related compounds. Journal of Pharmaceutical Sciences. 1991; 80(4):387-393.
55.    Badwan AA, El-Khordagui LK, Saleh AM, Khalil SA. The solubility of benzodiazepines in sodium salicylate solution and a proposed mechanism for hydrotropic solubilization. International Journal of Pharmaceutics. 1983; 13(1):67-74.
56.    Roy BK, Moulik SP. Functions of hydrotropes (sodium salicylate, proline, pyrogallol, resorcinol and urea) in solution with special reference to amphiphile behaviors. Colloids and Surfaces A. 2002; 203(1-3):155-166.
57.    Patil SV, Sahoo SK. Pharmaceutical overview of spherical crystallization. Der Pharmacia Letter. 2010; 2(1):421-426.
58.    Blagden N, Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Advanced Drug Delivery Reviews. 2007; 59(7):617-630.
59.    Aguiar AJ, Krc J, Kinkel AW, Samyn JC. Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate. Journal of Pharmaceutical Sciences. 1967; 56(7):847-853.
60.    Suleiman MS, Najib NM. Isolation and physicochemical characterization of solid forms of glibenclamide. International Journal of Pharmaceutics. 1989; 50(2):103-109.
61.    Shefter E, Higuchi T. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals. Journal of Pharmaceutical Sciences. 1963; 52:781-791.
62.    Allen PV, Rahn PD, Sarapu AC, Vanderwielen AJ. Physical characterization of erythromycin: anhydrate, monohydrate, and dihydrate crystalline solids. Journal of Pharmaceutical Sciences. 1978; 67(8):1087-1093.
63.    Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. Journal of Pharmaceutical Sciences. 2006; 95(3):499-516.
64.    Shan N, Zaworotko MJ. The role of cocrystals in pharmaceutical science. Drug Discovery Today. 2008; 13(9-10):440-446.
65.    Hickey MB, Peterson ML, Scoppettuolo LA. Performance comparison of a co-crystal of carbamazepine with marketed product. European Journal of Pharmaceutics and Biopharmaceutics. 2007; 67(1):112-119.
66.    Moribe K, Tozuka Y, Yamamoto K. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation. Advanced Drug Delivery Reviews. 2008; 60(3):328-338.
67.    Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Advanced Drug Delivery Reviews. 2008; 399-410.
68.    Paradkar A, Maheshwari M, Kamble R, Grimsey I, York P. Design and evaluation of celecoxib porous particles using melt sonocrystallization. Pharmaceutical Research. 23(6):1395-1400.
69.    Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm. Research. 2004; 21:201-230.
70.    Nema S, Washkuhn RJ, Brendel RJ. Excipients and their use in injectable products. Pharm. Sci. Technology. 1997; 51(166-171).
71.    Rubino JT, Yalkowsky SH. Co-solvency and deviations from log linear Solubilization, Pharm. Research. 1987; 4:231-236.
72.    Zhao L, Li P, Yalkowsky SH. Solubilization of fluasterone. Journal of Pharmaceutical Science. 1999; 88:967-969.
73.    Seedher N, Bhatia S. Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS Pharm. Sci. Tech. 2003; 4:33.
74.    Koester LS, Bertuol JB, Groch KR, Xavier CR, Moellerke R, Mayorga P, Dalla Costa T, Bassani VL. Bioavailability of carbamazepine: beta cyclodextrin complex in beagle dogs from hydroxy propyl methyl cellulose matrix tablets. Eur.J.Pharm.Sci. 2004; 22(2-3):201-207.
75.    Wen X, Tan F, Jing Z, Iiu Z. Prepration and study of the 1:2 Inclusion Complex of Carvedilol with R – Cyclodextrin. Simeoni, Journal of Pharmaceutical and Biomedical Analysis. 2004; 34:517-523.
76.    Loftsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice. International Journal of Pharmaceutics. 2001; 225:15-30.
77.    Sato K, Sugibayashi K, Morimoto Y. Species differences in percutaneous absorption of nicorandil. Journal of Pharmaceutical Sciences. 1991; 80:104-107.
78.    Sertsou G, Butler J, Scott A, Hempenstall J, Rades T. Factors affecting incorporation of drug into solid solution with HPMCP during solvent change coprecipitation. Int J Pharm. 2002; 245:99-108.
79.    Gabmann P, List M, Schweitzer A, Sucker H. Hydrosols-Alternatives for the parenteral application of poorly water soluble drugs. Eur. J. Pharm. Biopharm. 1994; 40:64-72.
80.    Nielsen FS, Petersen KB, M¨ullertz A. Bioavailability of probucol from lipid and surfactant based formulations in minipigs: influence of droplet size and dietary state. European Journal of Pharmaceutics and Biopharmaceutics. 2008; 69(2):553-562.
81.    Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedicine and Pharmacotherapy. 2004; 58(3):173-182.
82.    Schwendener RA, Schott H. Lipophilic 1-𝛽-D-arabinofuranosyl cytosine derivatives in liposomal formulations for oral and parenteral antileukemic therapy in the murine L1210 leukemia model. Journal of Cancer Research and Clinical Oncology. 1996; 122(12):723-726.
83.    Okore VC, Attama AA, Ofokansi KC, Esimone CO. Formulation and Evaluation of Niosomes. Indian J Pharm Sci. 2011; 73(3) .
84.    Pouton CW. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and ’self-microemulsifying’ drug delivery systems. European Journal of Pharmaceutical Sciences. 2000; 11(2):S93–S98.
85.    Gursoy N, Garrigue JS, Razafindratsita A, Lambert G, Benita S. Excipient effects on in-vitro cytotoxicity of a novel paclitaxel self-emulsifying drug delivery system. Journal of Pharmaceutical Sciences. 2003; 92(12):2411-2418.
86.    Mahmoud EA, Bendas ER, Mohamed MI. Preparation and evaluation of self-nanoemulsifying tablets of carvedilol. AAPS PharmSciTech, 2009; 10(1):183-192.
87.    Gupta S, Chavhan S, Sawant KK. Self-nanoemulsifying drug delivery system for adefovir dipivoxil: design, characterization, in-vitro and ex vivo evaluation. Colloids and Surfaces A. 2011; 392(1):145-155.
88.    O’Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. European Journal of Pharmaceutical Sciences. 2002; 15(5):405-415.
89.    Hauss DJ. Oral lipid based Formulations-Enhancing the Bioavailablity of Poorly water soluble drugs. In Drugs and Pharmaceutical Sciences. vol. 170, Informa healthcare,NC, USA, 2007.
90.    Charman WN, Porter CJ, Mithani S, Dressman JB. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci, 1997; 86:269-282.
91.    Lobenberg R, Amidon GL. Modern bioavailability, bioequivalence and Biopharmaceutics classification system. New Scientific approaches to international regulatory standards. Eur J Pharm. Biopharm. 2000; 50:3-12.
92.    Winstanley PA, Orme MLE. The effects of food on drug bioavailability. Br J Clin Pharmacol. 1989; 28:621-628.
93.    Leblanc MJ, Brunet S, Bouchard G. Effects of dietary soybean lecithin on plasma lipid transport and hepatic cholesterol metabolism in rats. Journal of Nutritional Biochemistry. 2003; 14(1):40-48.
94.    Nicolosi RJ, Wilson TA, Lawton C, Handelman GJ. Dietary effects on cardiovascular disease risk factors: beyond saturated fatty acids and cholesterol. Journal of the American College of Nutrition. 2001; 20(5):421-427.
95.    Hany A, E. Shemy. Soybean and health, In Tech Janeza Trdine 9, 51000 Rijeka, Croatia, 2011.
96.    Miranda DT, Batista VG, Grando FC, Paula FM, Felicio CA, Rubbo GF, Fernandes LC, Curi R, Nishiyama A. Soy lecithin supplementation alters macrophage phagocytosis and lymphocyte response to concanavalin A: a study in alloxan-induced diabetic rats. Cell Biochemistry Function. 2008; 26(8):859-65.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

0.38
2018CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available