Author(s): Anbarasu Sivaraj, Vanaja Kumar, Revathy Kalyanasundaram, Govindaraju Kasivelu

Email(s): vanaja_kumar51@yahoo.co.in

DOI: 10.5958/0974-360X.2020.00776.3   

Address: Anbarasu Sivaraj1, Vanaja Kumar1, Revathy Kalyanasundaram1, Govindaraju Kasivelu2
1Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600119, India.
2Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai 600119, India.
*Corresponding Author

Published In:   Volume - 13,      Issue - 9,     Year - 2020


ABSTRACT:
Gold nanoparticles were produced using lactic acid bacteria isolated from different environments. In order to investigate their anti-mycobacterial activity, ‘Screening’ was done using LRP assay. Promising results were achieved with L-AuNPs that showed greater inhibition against both M. smegmatis mc2155 (800AU/mL) and M. tuberculosis H37Rv at the concentration of 6.25µg/mL.


Cite this article:
Anbarasu Sivaraj, Vanaja Kumar, Revathy Kalyanasundaram, Govindaraju Kasivelu. Biogenic production of Gold nanoparticles using Lactic acid bacteria and their Anti-mycobacterial activity. Research J. Pharm. and Tech 2020; 13(9):4391-4394. doi: 10.5958/0974-360X.2020.00776.3

Cite(Electronic):
Anbarasu Sivaraj, Vanaja Kumar, Revathy Kalyanasundaram, Govindaraju Kasivelu. Biogenic production of Gold nanoparticles using Lactic acid bacteria and their Anti-mycobacterial activity. Research J. Pharm. and Tech 2020; 13(9):4391-4394. doi: 10.5958/0974-360X.2020.00776.3   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-9-64


REFERENCES:
1.    World Health Organization‎. Global tuberculosis report 2018. World Health Organization. https://apps.who.int/iris/handle/10665/274453. License: CC BY-NC-SA 3.0 IGO.
2.    Costa-Gouveia J, Pancani E, Jouny S, Machelart A, Delorme V, Salzano G, Iantomasi R, Piveteau C, Queval CJ, Song OR, Flipo M, Deprez B, Saint-André JP,  Hureaux J, Majlessi L, Willand N, Baulard A, Brodin P, Gref R. Combination therapy for tuberculosis treatment: pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci Rep. 2017; 7: 5390.
3.    Khan FR, Kennaway GM, Croteau MN, Dybowska A, Smith BD, Nogueira AJ, Rainbow PS, Luoma SN, Valsami-Jones E. In vivo retention of ingested Au NPs by Daphnia magna: no evidence for trans-epithelial alimentary uptake. Chemosphere. 2014; 100: 97–104.

4.    Yah CS. The toxicity of Gold Nanoparticles in relation to their physiochemical properties. Biomedical Research. 2013; 24: 400-413.
5.    Sivaraj A, Sundar R, Manikkam R, Parthasarathy K, Rani UN, Kumar V. Potential applications of lactic acid bacteria and bacteriocins in anti-mycobacterial therapy.  Asian Pac J Trop Med. 2018; 11: 453-459.
6.    Yusuf MA. Lactic Acid Bacteria:Bacteriocin Producer: A Mini Review. IOSR Journal Of Pharmacy. 2013; 3: 44-50.
7.    Nair B, Pradeep T. Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Crystal Growth and Design. 2002; 2: 293-298.
8.    Nguyen HN, Jovel SR, Nguyen THK. Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery. Journal of Nanomaterials.2017;  https://doi.org/10.1155/2017/6847297
9.    Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bulletin. 2006; 39: 22-28.
10.    Suganya KS, Govindaraju K, Kumar VG, Stalin Dhas T, Karthick V, Singaravelu G, Elanchezhiyan M. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C Mater Biol Appl. 2015; 47:351–356.
11.    Yamamoto Y, Togawa Y, Shimosaka M, Okazaki M. Purification and Characterization of a Novel Bacteriocin Produced by Enterococcus faecalis Strain RJ-11. Applied and Environmental Microbiology. 2003; 69:5746–5753.
12.    Allotey-Babington GL, Nettey H, Debrah P, Adi-Dako O, Sasu C, Antwi A, Darko Y, Nartey N, Asare J. Screening of Several Anti-Infectives for in Vitro Activity against Mycobacterium smegmatis. Advances in Microbiology. 2014; 4: 1197-1203.
13.    Anbarasu S, Kumar V,  Revathy K, Krupakar P, Govindaraju K. Commercial yeast extracts mediated green synthesis of silver chloride nanoparticles and their anti-mycobacterial activity. J. Clust. Sci. 2020; 31: 287-291.
14.    Mohanty S, Jena P, Mehta R, Pati R, Banerjee B, Patil S, Sonawanea A. Cationic Antimicrobial Peptides and Biogenic Silver Nanoparticles Kill Mycobacteria without Eliciting DNA Damage and Cytotoxicity in Mouse Macrophages. Antimicrobial Agents and Chemotherapy. 2013; 57: 3688 –3698.
15.    Banu A, Rathod V. Biosynthesis of Monodispersed Silver Nanoparticles and their Activity against Mycobacterium tuberculosis. J Nanomed Biotherapeut Discov. 2013; 3:1 https://doi.org/10.4172/2155-983X.1000110
16.    Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, Sarkar D, Chopade BA. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomedicine. 2016; 11:1889-1897.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available