Author(s): Dalia A Mostafa, Faten S. Bayoumi, Heba M. Taher, Basma H. Abdelmonem, Tarek F. Eissa

Email(s): damostafa@msa.eun.eg

DOI: 10.5958/0974-360X.2020.00781.7   

Address: Dalia A Mostafa1, Faten S. Bayoumi2, Heba M. Taher3, Basma H. Abdelmonem4, Tarek F. Eissa5
1Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
2Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
2Prof of Immunogenetics Department in National Research Center, Giza, Egypt.
3Conservative Department, Faculty of Dentistry, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
4Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza, Egypt.
5Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
*Corresponding Author

Published In:   Volume - 13,      Issue - 9,     Year - 2020


ABSTRACT:
Objective: This study evaluates the antimicrobial potential of Mentha spp. (M.spicata L.,M. xpiperita L. and M. pulegium L.) essential oils as raw and loaded solid lipid nanoparticles (SLNs)against dental caries. Design: Essentials oils extraction from fresh aerial parts of Mentha spp. was carried out using hydro distillation technique. Solid lipid nanoparticles of Mentha essential oil were prepared by w/o/w type double emulsification method. The antimicrobial activity of both pure Mentha spp. essential oils and Mentha spp. SLNs was determined against bacteria presented in saliva collected from 12 patients using agar diffusion assay. Results: Mentha spp. essential oils loaded solid lipid nanoparticles (MSLNs) were spherical shaped with sizes ranged from 111 to 202 nm and with PDI from 0.43 to 0.76, EE% between 85 and 88, and ZP of -11.8 to -40 mV. Antimicrobial results showed that MSLNs exhibited higher in vitro antimicrobial activity than pure Mentha spp. essential oil. Particularly, with an inhibition zone of 20 mm. These both MSLNs were even more active than the reference compound novobiocin. Conclusion: Our findings demonstrate that Mentha spp. essential oils as a nanostructure increase the efficiency of these natural products as antibacterial agents against caries.


Cite this article:
Dalia A Mostafa, Faten S. Bayoumi, Heba M. Taher, Basma H. Abdelmonem, Tarek F. Eissa. Antimicrobial potential of Mentha Spp. essential oils as raw and loaded solid lipid nanoparticles against dental caries. Research J. Pharm. and Tech. 2020; 13(9):4415-4422. doi: 10.5958/0974-360X.2020.00781.7

Cite(Electronic):
Dalia A Mostafa, Faten S. Bayoumi, Heba M. Taher, Basma H. Abdelmonem, Tarek F. Eissa. Antimicrobial potential of Mentha Spp. essential oils as raw and loaded solid lipid nanoparticles against dental caries. Research J. Pharm. and Tech. 2020; 13(9):4415-4422. doi: 10.5958/0974-360X.2020.00781.7   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-9-69


REFERENCES:
1.    Aas, J. A., Griffen, A. L., Dardis, S. R., Lee, A. M., Olsen, I., Dewhirst, F. E., Leys, E. J., and Paster, B. J. (2008). Bacteria of dental caries in primary and permanent teeth in children and young adults. Journal of Clinical Microbiology. 46(4), 1407-1417. https://doi.org/10.1128/JCM.01410-07.
2.    Allaker, R. P., and Memarzadeh, K. (2014). Nanoparticles and control of oral infection. The International Journal of Antimicrobial Agents. 43,95-104. https://doi.org/
3.    Amer, R. (2016). Methotrexate loaded solid lipid nanoparticles using binary lipid mixture: preparation, characterization and in vitro evaluation.Indian Stream Research Journal,6, 37-42. https://doi.org/10.1016/j.ijantimicag.2013.11.002.
4.    Kulkarni, A. R., Soppimath, K. S., and Aminabhavi, T. J. (1999). Solubility study of Azadirachta indica A. juss (Neem) seed oil in the presence of co-solvent/Non-ionic surfactant. Journal of Chemical and Engineering Data.44 (4), 836-838.https://doi.org/ 10.1021/je980286b.
5.    Asikainen, S., and Alaluusua, S. (1993). Bacteriology of dental infections. European Heart Journal. 14: 43-50.
6.    Azzimonti B1, 2, Cochis A3,4, Beyrouthy ME5, Iriti M6, Uberti F7,8, Sorrentino R9, Landini MM10, Rimondini L11,12, Varoni EM13 2015 Essential Oil from Berries of Lebanese Juniperus excelsa M. Bieb Displays Similar Antibacterial Activity to Chlorhexidine but Higher Cytocompatibility with Human Oral Primary Cells Molecules. May 21;20(5):9344-57. doi: 10.3390/ molecules20059344.
7.    (Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—a review. Food and Chemical Toxicology. 2008;46: 446–475
8.    Bouyahya, A., Et-Touys, A., Bakri, Y., Talbaui, A., Fellah, H., Abrini, J., and Dakka, N. 2017. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microbial Pathogenesis.111, 41-49. https://doi.org/ 10.1016/ j.micpath.2017.08.015.
9.    British Pharmacopoeia. Great Britain. Medicines Commission. (1980). London, UK.
10.    Curk, F.; Ollitrault, F.; Garcia-Lor, A. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann. Bot. 2016, 117, 565–583.
11.    Da Silva Ramos, R., Rodrigues, A. B., Farias, A. L., Simões, R. C., Pinheiro, M. T., Ferreira, R. M., Costa Barbosa, L. M., Picanço Souto, R. N., Fernandes, J. B., Santos, L. D., andde Almeida, S.S. (2017). Chemical composition and in vitro antioxidant, cytotoxic, antimicrobial, and larvicidal activities of the essential oil of Mentha piperita L. (Lamiaceae). Scientific World Journal. 2017, Article ID 4927214: 1-8. https://doi.org/ 10.1155/2017/4927214.
12.    Ebrahimzadeh M.A., Nabavi S.M., Nabavi S.F. Antioxidant and antihemolytic activities of Mentha longifolia. Pharmacologyonline. 2010; 2:464–471.
13.    (Eloff JN. (1998) A sensitive and quick method to determine the minimum inhibitory concentration of plant extracts for bacteria. Planta Medica, 60,1-8
14.    Gomes, C., Moreira, R.G., and Castell-Perez, E. (2011). Poly (DL-lactide-co-glycolide) (PLGA) Nanoparticles with Entrapped trans. Cinnamaldehyde and Eugenol for Antimicrobial Delivery Applications. Journal of Food Science. 76(2), N16-N24. https://doi.org/ 10.1111/j.1750-3841.2010.01985.x.
15.    Gruľová D, De Martino L, Mancini E, Salamon I, De Feo V. (2015) Seasonal variability of the main components in essential oil of Mentha × piperita L. Journal of the Science of Food and Agriculture, 95, 621-627.
16.    Hosseini, S.F., Zandi, M., Rezaei, M., and Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers. 95 50-56. https://doi.org/ 10.1016/j.carbpol.2013.02.031.
17.    Hussain,A. I., Anwar, F., Nigam, P. S., Ashraf, M., and Gilani, A. H. (2010). Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Menthaspecies. Journal of the Science of Food and Agriculture.90(11), 1827-1836. https://doi.org/ 10.1002/jsfa.4021.
18.    Idrees, M., Hammad, M., Faden, A., and Kujan, O. (2017). Influence of body mass index on severity of dental caries: cross-sectional study in healthy adults. Annals of Saudi Medicine, 37(6), 444-448. https://doi.org/ 10.5144/0256-4947.2017.444.
19.    Kanakis, C. D., Petrakis, E. A., Kimbaris, A. C., Pappas, C., Tarantilis, P. A., and Polissiou, M. G. (2012). Classification of Greek Mentha pulegium L. (Pennyroyal) Samples, According to Geographical Location by Fourier Transform Infrared Spectroscopy. Phytochemical Analysis. 23: 34-43. https://doi.org/ 10.1002/pca.1322.
20.    Katge, F.,  Rusawat, B.,  Shitoot, A., Poojari, M.,  Pammi, T., and Patil D.( 2015). DMFT index assessment, plaque pH, and microbiological analysis in children with special health care needs. Journal of International Society of Preventive and Community Dentistry. 5(5): 383–388. https://doi.org/10.4103/ 2231-0762.164790.
21.    Kazemi, M., Rostami, H., and Shafiei, S. (2012). Antibacterial and antifungal activity of some medicinal plants from Iran. Plant Science. 7(2), 55-66. https://doi.org/10.3923/jps.2012.55.66.
22.    Kokkini, S., Karousou, R., and Lanaras, T. (1995). Essential oils of spearmint (Carvone rich) plants from the island of Crete (Greece). Biochemical Systematics and Ecology.23(4), 425–430. https:// doi.org/10.1016/0305-1978(95)00021-L
23.    Maderuelo, C., Zarzuelo, A., and Lanao, J.M. (2011). Critical factors in the release of drugs from sustained release hydrophilic matrices. The Journal of Controlled Release. 154(1), 2-19.https://doi.org/10.1016/j.jconrel.2011.04.002.
24.    Malmsten M, Bysell H, Hansson P. Biomacromolecules in macrogels – Opportunities and challenges for drug delivery. Curr.Opin. Colloid IN. 2010, 1, 6-18.
25.    Oishi M, Miyagawa N, Sakaru T, Nagasaki Y. pH-responsive nanogel containing platinum nanoparticles: Applications to on-off regulation of catalytic activity for reactive oxygen species. React. Funct. Polym. 2007, 67,662-68.
26.    Ong, S. G., Ming, L. C., Lee, K. S., and Yuen, K. H. (2016). Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes. Pharmaceutics.8(3), 1-17. https://doi.org/10.3390/ pharmaceutics 8030025.
27.    Peixoto I.T.A., Furlanetti V.F., Anibal P.C., Duarte M.C.T., Höfling J.F. (2009) Potential pharmacological and toxicological basis of the essential oil from Mentha spp. Rev Ciênc Farm Básica Apl;30(3):235–239.
28.    Ravi Kumar, M. N. (2000). Nano and microparticles as controlled drug delivery devices. The Journal of Pharmacy and Pharmaceutical Sciences. 3(2) ,234-258.
29.    Riachi L.G., De Maria C.A.B. (2015). Peppermint antioxidants revisited. Food Chemistry.;176: 72–81.
30.    São Pedro, A., Espirito Santo, I., Silva, C. V., Detoni, C., and Albuquerque, E. (2013). The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity. In ―Microbial pathogens and strategies for combating them: science, technology and education‖, A. Méndez-Vilas Ed.. Formatex Research Center, Zurbaran, 06002 Badajoz, Spain. PP 1364-1374.Pothakamury UR.
31.    Singh, R., Shushni, M. A., and Belkheir, A. (2015). Antibacterial and antioxidant activities of Mentha piperita L. The Arabian Journal of Chemistry. 8(3), 322-328.https://doi.org/10.1016/ j.arabjc.2011.01.019.
32.    Solórzano-Santos, F., and Miranda-Novales, M. G. (2012). Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology. 23(2), 136–141.https://doi.org/10.1016/ j.copbio.2011.08.005.
33.    Song, J.K.; Bae, J.M. Citrus fruit intake and breast cancer risk: A quantitative systematic review. J. Breast Cancer 2016, 16, 72–76.
34.    Vijayan, V., Aafreen, S., Sakthivel, S., and Ravindra Reddy, K. (2013). Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. Journal of Acute Disease. 2(4), 282-286.https://doi.org/ 10.1016/S2221-6189(13)60144-4.
35.    Wattanasatcha, A., Rengpipat, S., and Wanichwecharungruang, S. (2012). Thymol nanospheres as an effective anti-bacterial agent. International Journal of Pharmaceutics. 434(1-2), 360–365.https://doi.org/10.1016/j.ijpharm.2012.06.017.
36.    Wiwattanarattanabut, K.; Choonharuangdej, S.; Srithavaj, T. (2017) In Vitro Anti-Cariogenic Plaque Effects of Essential Oils Extracted from Culinary Herbs. J. Clin. Diagn. Res., 11, 30–35.
37.    Zhang, L., Pornpattananangkul, D., Hu, C.M., and Huang, C.M. (2010). Development of nanoparticles for antimicrobial drug delivery. Current Medicinal Chemistry. 17(6), 585-594. https://doi.org/10.2174/092986710790416290.
38.    Zhao D., Xu Y.W., Yang G.L., Husaini A.M., Wu W. (2013) Variation of essential oil of Mentha haplocalyx Briq. and Mentha spicata L. from China. Industrial Crops and Products.;42: 251–260.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available