Author(s):
Aditya Kiran Gatta, Nancy V Philip, Raghu Chandrashekhar H, N Udupa, Meka Sreenivasa Reddy, Srinivas Mutalik, Venkata Rao Josyula
Email(s):
g.adi750@gmail.com , nancyphilip26@gmail.com , raghushekhar@gmail.com , n.udupa@manipal.edu , ms.reddy@manipal.edu , ss.mutalik@manipal.edu
DOI:
10.5958/0974-360X.2021.00011.1
Address:
Aditya Kiran Gatta, Nancy V Philip, Raghu Chandrashekhar H, N Udupa, Meka Sreenivasa Reddy, Srinivas Mutalik, Venkata Rao Josyula
Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka 576104.
*Corresponding Author
Published In:
Volume - 14,
Issue - 1,
Year - 2021
ABSTRACT:
Better understanding of breast cancer and drug resistance is possible today due to significant advancements in the field of cell and molecular biology. In this study, we provide a therapeutic approach (Ch-PLGA-siRNA NP) to downregulate the ABCG2 pump, highly expressed in drug resistant breast cancer. Methods: We designed an efficient siRNA, evaluated its binding and off targeting properties. Further, formulated and assessed for the in vitro potency and in vivo toxicity. Results: Three potential siRNA molecules, satisfying the important criteria with specificity towards ABCG2, were designed and validated. Further the siRNA molecules were delivered to the drug resistant breast cancer cells using the nanoparticles and observed for the levels of reduction in the expression of ABCG2. We then tested the formulation loaded with siRNA for acute toxicity in Swiss albino mice and found to be non toxic in nature. Conclusion: This study proved that the designed siRNA molecules as very potent moieties against ABCG2 resistant breast cancer with non toxic profile in vivo.
Cite this article:
Aditya Kiran Gatta, Nancy V Philip, Raghu Chandrashekhar H, N Udupa, Meka Sreenivasa Reddy, Srinivas Mutalik, Venkata Rao Josyula. Strategic design of potential siRNA molecules for in vitro Evaluation in ABCG2 resistant Breast cancer and in vivo toxicity Determination. Research J. Pharm. and Tech. 2021; 14(1):55-61. doi: 10.5958/0974-360X.2021.00011.1
Cite(Electronic):
Aditya Kiran Gatta, Nancy V Philip, Raghu Chandrashekhar H, N Udupa, Meka Sreenivasa Reddy, Srinivas Mutalik, Venkata Rao Josyula. Strategic design of potential siRNA molecules for in vitro Evaluation in ABCG2 resistant Breast cancer and in vivo toxicity Determination. Research J. Pharm. and Tech. 2021; 14(1):55-61. doi: 10.5958/0974-360X.2021.00011.1 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2021-14-1-11
REFERENCES:
1. Tang X, Loc WS, Dong C, Matters GL, Butler PJ, Kester M, et al. The use of nanoparticulates to treat breast cancer. Nanomedicine. 2017;12(19):2367-88.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer Journal for Clinicians. 2018;68(6):394-424.
3. Malvia S, Bagadi SA, Dubey US, Saxena S. Epidemiology of breast cancer in Indian women. Asia‐Pacific Journal of Clinical Oncology. 2017;13(4):289-95.
4. Chaturvedi M, Vaitheeswaran K, Satishkumar K, Das P, Stephen S, Nandakumar A. Time trends in breast cancer among Indian women population: an analysis of population based cancer registry data. Indian Journal of Surgical Oncology. 2015;6(4):427-34.
5. Nandakumar A. National Cancer Registry Programme (2001) Consolidated report of the population based cancer registries1990–1996. Indian Council of Medical Research, New Delhi. 2001.
6. Karale PA, Karale MA, Utikar MC. Advanced Molecular Targeted Therapy in Breast Cancer. Research Journal of Pharmacology and Pharmacodynamics. 2018;10(1):29-37.
7. Sudhakar G, Pai V, Pai A. An overview on current Strategies in Breast Cancer Therapy. Research Journal of Pharmacology and Pharmacodynamics. 2013;5(6):353-5.
8. Naseera S, Rajini G, Venkateswarlu B, Priyadarisini JPM. A Review on Image Processing Applications in Medical Field. Research Journal of Pharmacy and Technology. 2017;10(10):3456-60.
9. Addison CL, Cabrita MA. Breast Cancer Drug Resistance. Encyclopedia of Cancer. 2011:497-503.
10. Balaji SA, Udupa N, Chamallamudi MR, Gupta V, Rangarajan A. Role of the drug transporter ABCC3 in breast cancer chemoresistance. PLoS ONE. 2016;11(5):e0155013.
11. Gottesman MM. Mechanisms of cancer drug resistance. Annual Review of Medicine. 2002;53(1):615-27.
12. Zahreddine H, Borden K. Mechanisms and insights into drug resistance in cancer. Frontiers in Pharmacology. 2013;4: 28.
13. Taylor NM, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP. Structure of the human multidrug transporter ABCG2. Nature. 2017;546(7659):504.
14. Calcagno AM, Fostel JM, To KK, Salcido CD, Martin SE, Chewning KJ, et al. Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes. British Journal of Cancer. 2008;98(9):1515.
15. Jagani Hitesh JVR. RNA Interference in Therapeutics: Issues, solutions and Future prospects. 1 ed. Singh B, editor. U.S.A: Studium Press; 2015. 203-19 p.
16. Shinde S, Saroagi GK, Mishra DK. Nanocarriers for Effective si-RNA delivery. Research Journal of Pharmacy and Technology. 2018;11(9):4166-72.
17. Kars MD, Işeri ÖD, Gündüz U, Ural AU, Arpaci F, Molnar J. Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anticancer Research. 2006;26(6B):4559-68.
18. Gatta AK, Hariharapura RC, Udupa N, Reddy MS, Josyula VR. Strategies for improving the specificity of siRNAs for enhanced therapeutic potential. Expert Opinion on Drug Discovery. 2018;13(8):709-25.
19. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 2005;23(2):222-6. Epub 2004/12/28.
20. Sharif Shohan MU, Paul A, Hossain M. Computational design of potential siRNA molecules for silencing nucleoprotein gene of rabies virus. Future Virology. 2018;13(3):159-70.
21. Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr C-M. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine: Nanotechnology, Biology and Medicine. 2007;3(3):173-83.
22. Ji J, Zuo P, Wang Y-L. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles. Nanoscale Research Letters. 2015;10(1):453.
23. Tabatabaei Mirakabad FS, Akbarzadeh A, Milani M, Zarghami N, Taheri-Anganeh M, Zeighamian V, et al. A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology. 2016;44(1):423-30.
24. Dönmez Y, Akhmetova L, İşeri ÖD, Kars MD, Gündüz U. Effect of MDR modulators verapamil and promethazine on gene expression levels of MDR1 and MRP1 in doxorubicin-resistant MCF-7 cells. Cancer Chemotherapy and Pharmacology. 2011;67(4):823-8.
25. Khatri N, Baradia D, Vhora I, Rathi M, Misra A. Development and characterization of siRNA lipoplexes: effect of different lipids, in vitro evaluation in cancerous cell lines and in vivo toxicity study. AAPS Pharm Sci Tech. 2014;15(6):1630-43.
26. Chang G. Multidrug resistance ABC transporters. FEBS Letters. 2003; 555(1): 102-5.
27. Li YT, Chua MJ, Kunnath AP, Chowdhury EH. Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs. International Journal of Nanomedicine. 2012;7: 2473.
28. Ughachukwu P, Unekwe P. Efflux Pump. Mediated Resistance in Chemotherapy. Annals of Medical and Health Sciences Research. 2013; 2(2):191-8.
29. Durmus S, Sparidans RW, Van Esch A, Wagenaar E, Beijnen JH, Schinkel AH. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharmaceutical Research. 2015;32(1): 37-46.
30. Westover D, Li F. New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies. Journal of Experimental & Clinical Cancer Research. 2015;34(1): 159.
31. Dudek H, Wong DH, Arvan R, Shah A, Wortham K, Ying B, et al. Knockdown of β-catenin with dicer-substrate siRNAs reduces liver tumor burden in vivo. Molecular Therapy. 2014;22(1): 92-101.
32. Sano M, Sierant M, Miyagishi M, Nakanishi M, Takagi Y, Sutou S. Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Research. 2008;36(18):5812-21.
33. Rose SD, Kim D-H, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Research. 2005;33(13):4140-56.
34. Tanudji M, Machalek D, Arndt GM, Rivory L. Competition between sirna duplexes: Impact of rna-induced silencing complex loading efficiency and comparison between conventional-21 bp and dicer-substrate sirnas. Oligonucleotides. 2010;20(1): 27-32.
35. Bohula EA, Salisbury AJ, Sohail M, Playford MP, Riedemann J, Southern EM, et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. Journal of Biological chemistry. 2003;278(18): 15991-7.
36. Sohrab SS, El-Kafrawy SA, Mirza Z, Kamal MA, Azhar EI. Design and Delivery of Therapeutic siRNAs: Application to MERS-Coronavirus. Current Pharmaceutical Design. 2018;24(1):62-77.
37. Shawan M, Hossain MM, Hasan MA, Hasan MM, Parvin A, Akter S, et al. Design and prediction of potential RNAi (siRNA) molecules for 3'UTR PTGS of different strains of zika virus: a computational approach. Nat Sci. 2015;13(2):37-50.
38. Markham NR, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Research. 2005;33(suppl_2): W577-W81.
39. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. Journal of Controlled Release. 2012;161(2):505-22.
40. Prabhakar C, Krishna KB. A Review on Polymeric Nanoparticles. Research Journal of Pharmacy and Technology. 2011;4(4): 496-8.
41. Sivakumar S, Safhi MM, Aamena J, Kannadasan M. Pharmaceutical aspects of chitosan polymer “In Brief”. Res J Pharm Tech. 2013;6: 1439-42.
42. Cao Y, Tan YF, Wong YS, Liew MWJ, Venkatraman S. Recent Advances in Chitosan-Based Carriers for Gene Delivery. Marine drugs. 2019;17(6): 381.
43. Jana U, Pal S, Mohanta G, Manna P, Manavalan R. Nanoparticles: A Potential Approach for Drug Delivery. Research Journal of Pharmacy and Technology. 2011;4(7): 1016-9.
44. Mohammed MA, Syeda J, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4): 53.
45. Hickerson RP, Vlassov AV, Wang Q, Leake D, Ilves H, Gonzalez-Gonzalez E, et al. Stability study of unmodified siRNA and relevance to clinical use. Oligonucleotides. 2008;18(4):345-54.
46. Bégin-Lavallée V, Midavaine É, Dansereau M-A, Tétreault P, Longpré J-M, Jacobi AM, et al. Functional inhibition of chemokine receptor CCR2 by dicer-substrate-siRNA prevents pain development. Molecular pain. 2016;12: 1744806916653969.
47. Sarret P, Doré-Savard L, Tétreault P, Bégin-Lavallée V, Beaudet N. Application of dicer-substrate siRNA in pain research. RNA technologies and their applications: Springer; 2010. p. 161-90.
48. Jain VK, Ahirwar D, Jain B, Ahirwar B. Evaluation of Acute Oral Toxicity and Mast Cell Degranulation of an aqueous ethanolic extract of Tritium aestivum Linn. Research Journal of Pharmacy and Technology. 2018;11(2): 643-8.